4,244 research outputs found
Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane
A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets
Preliminary results of simulated vortex encounters by a twin-engine, commercial aircraft during final landing approach
Piloted simulations of encounters with vortices of various ages and degrees of attenuation were performed with the Visual Motion Simulator. In the simulations, a twin engine, commercial transport on final approach, encountered the modeled vortices of a four engine, wide body, commercial transport. The data show the effect of vortex age and attenuation on the severity of the initial upset, as well as the effect of the vortex encounters on the landing capability
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
The preservation of atmospheric nitrate in snow at Summit, Greenland
There is great interest in using nitrate NO3 isotopic composition in ice cores to track the history of precursor nitrogen oxides (NOx = NO + NO2) in the atmosphere. Nitrate NO3 however can be lost from the snow by surface processes, such as photolysis back to NOx upon exposure to sunlight, making it difficult to interpret records of NO3 as a tracer of atmospheric NOx loading. In a campaign consisting of two field seasons (May–June) at Summit, Greenland, high temporal frequency surface snow samples were collected and analyzed for the oxygen isotopic composition of NO3. The strong, linear relationship observed between the oxygen isotopes of NO3 in both 2010 and 2011, is difficult to explain in the presence of significant post depositional processing of NO3 unless several unrelated variables change in concert. Therefore, the isotopic signature of NO3 in the snow at Summit is most feasibly explained as preserved atmospheric NO3 deposition
Recommended from our members
Soft X-ray seeding studies for the SLAC Linac Coherent Light Source II
We present the results from studies of soft X-ray seeding options for the LCLS-II X-ray free electron laser (FEL) at SLAC. The LCLS-II will use superconducting accelerator technology to produce X-ray pulses at up to 1 MHz repetition rate using 4 GeV electron beams. If properly seeded, these pulses will be nearly fully coherent, and highly stable in photon energy, bandwidth, and intensity, thus enabling unique experiments with intense high-resolution soft X-rays. Given the expected electron beam parameters from start to end simulations and predicted FEL performance, our studies reveal echo enabled harmonic generation (EEHG) and soft X-ray self-seeding (SXRSS) as promising and complementary seeding methods. We find that SXRSS has the advantage of simplicity and will deliver 5-35 times higher spectral brightness than EEHG in the 1-2 nm range, but lacks some of the potential for phase-stable multipulse and multicolor FEL operations enabled by external laser seeding with EEHG
Tip Splittings and Phase Transitions in the Dielectric Breakdown Model: Mapping to the DLA Model
We show that the fractal growth described by the dielectric breakdown model
exhibits a phase transition in the multifractal spectrum of the growth measure.
The transition takes place because the tip-splitting of branches forms a fixed
angle. This angle is eta dependent but it can be rescaled onto an
``effectively'' universal angle of the DLA branching process. We derive an
analytic rescaling relation which is in agreement with numerical simulations.
The dimension of the clusters decreases linearly with the angle and the growth
becomes non-fractal at an angle close to 74 degrees (which corresponds to eta=
4.0 +- 0.3).Comment: 4 pages, REVTex, 3 figure
Significant reduction in arc frequency biased solar cells: Observations, diagnostics, and mitigation technique(s)
A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor
Statistics of Partial Minima
Motivated by multi-objective optimization, we study extrema of a set of N
points independently distributed inside the d-dimensional hypercube. A point in
this set is k-dominated by another point when at least k of its coordinates are
larger, and is a k-minimum if it is not k-dominated by any other point. We
obtain statistical properties of these partial minima using exact probabilistic
methods and heuristic scaling techniques. The average number of partial minima,
A, decays algebraically with the total number of points, A ~ N^{-(d-k)/k}, when
1<=k<d. Interestingly, there are k-1 distinct scaling laws characterizing the
largest coordinates as the distribution P(y_j) of the jth largest coordinate,
y_j, decays algebraically, P(y_j) ~ (y_j)^{-alpha_j-1}, with
alpha_j=j(d-k)/(k-j) for 1<=j<=k-1. The average number of partial minima grows
logarithmically, A ~ [1/(d-1)!](ln N)^{d-1}, when k=d. The full distribution of
the number of minima is obtained in closed form in two-dimensions.Comment: 6 pages, 1 figur
Exact Multifractal Spectra for Arbitrary Laplacian Random Walks
Iterated conformal mappings are used to obtain exact multifractal spectra of
the harmonic measure for arbitrary Laplacian random walks in two dimensions.
Separate spectra are found to describe scaling of the growth measure in time,
of the measure near the growth tip, and of the measure away from the growth
tip. The spectra away from the tip coincide with those of conformally invariant
equilibrium systems with arbitrary central charge , with related
to the particular walk chosen, while the scaling in time and near the tip
cannot be obtained from the equilibrium properties.Comment: 4 pages, 3 figures; references added, minor correction
An area law for entanglement from exponential decay of correlations
Area laws for entanglement in quantum many-body systems give useful
information about their low-temperature behaviour and are tightly connected to
the possibility of good numerical simulations. An intuition from quantum
many-body physics suggests that an area law should hold whenever there is
exponential decay of correlations in the system, a property found, for
instance, in non-critical phases of matter. However, the existence of quantum
data-hiding state--that is, states having very small correlations, yet a volume
scaling of entanglement--was believed to be a serious obstruction to such an
implication. Here we prove that notwithstanding the phenomenon of data hiding,
one-dimensional quantum many-body states satisfying exponential decay of
correlations always fulfil an area law. To obtain this result we combine
several recent advances in quantum information theory, thus showing the
usefulness of the field for addressing problems in other areas of physics.Comment: 8 pages, 3 figures. Short version of arXiv:1206.2947 Nature Physics
(2013
- …