453 research outputs found
The Graphical Lasso: New Insights and Alternatives
The graphical lasso \citep{FHT2007a} is an algorithm for learning the
structure in an undirected Gaussian graphical model, using
regularization to control the number of zeros in the precision matrix
{\B\Theta}={\B\Sigma}^{-1} \citep{BGA2008,yuan_lin_07}. The {\texttt R}
package \GL\ \citep{FHT2007a} is popular, fast, and allows one to efficiently
build a path of models for different values of the tuning parameter.
Convergence of \GL\ can be tricky; the converged precision matrix might not be
the inverse of the estimated covariance, and occasionally it fails to converge
with warm starts. In this paper we explain this behavior, and propose new
algorithms that appear to outperform \GL.
By studying the "normal equations" we see that, \GL\ is solving the {\em
dual} of the graphical lasso penalized likelihood, by block coordinate ascent;
a result which can also be found in \cite{BGA2008}.
In this dual, the target of estimation is \B\Sigma, the covariance matrix,
rather than the precision matrix \B\Theta. We propose similar primal
algorithms \PGL\ and \DPGL, that also operate by block-coordinate descent,
where \B\Theta is the optimization target. We study all of these algorithms,
and in particular different approaches to solving their coordinate
sub-problems. We conclude that \DPGL\ is superior from several points of view.Comment: This is a revised version of our previous manuscript with the same
name ArXiv id: http://arxiv.org/abs/1111.547
Local case-control sampling: Efficient subsampling in imbalanced data sets
For classification problems with significant class imbalance, subsampling can
reduce computational costs at the price of inflated variance in estimating
model parameters. We propose a method for subsampling efficiently for logistic
regression by adjusting the class balance locally in feature space via an
accept-reject scheme. Our method generalizes standard case-control sampling,
using a pilot estimate to preferentially select examples whose responses are
conditionally rare given their features. The biased subsampling is corrected by
a post-hoc analytic adjustment to the parameters. The method is simple and
requires one parallelizable scan over the full data set. Standard case-control
sampling is inconsistent under model misspecification for the population
risk-minimizing coefficients . By contrast, our estimator is
consistent for provided that the pilot estimate is. Moreover, under
correct specification and with a consistent, independent pilot estimate, our
estimator has exactly twice the asymptotic variance of the full-sample MLE -
even if the selected subsample comprises a miniscule fraction of the full data
set, as happens when the original data are severely imbalanced. The factor of
two improves to if we multiply the baseline acceptance
probabilities by (and weight points with acceptance probability greater
than 1), taking roughly times as many data points into the
subsample. Experiments on simulated and real data show that our method can
substantially outperform standard case-control subsampling.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1220 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Sparse inverse covariance estimation with the lasso
We consider the problem of estimating sparse graphs by a lasso penalty
applied to the inverse covariance matrix. Using a coordinate descent procedure
for the lasso, we develop a simple algorithm that is remarkably fast: in the
worst cases, it solves a 1000 node problem (~500,000 parameters) in about a
minute, and is 50 to 2000 times faster than competing methods. It also provides
a conceptual link between the exact problem and the approximation suggested by
Meinhausen and Buhlmann (2006). We illustrate the method on some cell-signaling
data from proteomics.Comment: submitte
- …