18 research outputs found

    Površinska obrada polimera u tinjavom argonskom izboju

    Get PDF
    Surface treatment of polymer material (thin polyester samples) was performed in the DC glow discharge, using Ar gas. The effect of the experimental parameters of the glow discharge (the gas pressure and the sample treatment time) on the wettability of the samples was studied. The wettability was characterized by the water repellency (water spray test). In the present work, it was shown that at a constant gas pressure (270 or 670 Pa), the wettability of the polyester sample was decreased by increasing the exposure time of the sample in the glow discharge. At constant exposure times (2, 5, 10 or 15 min) the wettability of the polyester sample was increased by increasing the gas pressure. This is due to the formation of hydrophilic groups, which increased by increasing the density of electrons and/or metastables.Površinski smo obrađivali polimerni materijal (tanke uzorke poliestera) u istosmjernom tinjavom argonskom izboju. Proučavali smo učinke eksperimentalnih parametara izboja (tlaka plina i vremena izlaganja u izboju) na močivost uzoraka. Močivost smo određivali mjerenjem odbojnosti vode (metoda prskanjem vode). U ovom se radu pokazuje da se na stalnom tlaku plina (270 ili 670 Pa), močivost uzoraka poliestera smanjuje za dulja vremena izlaganja u izboju. Za određena vremena izlaganja (2, 5, 10 ili 15 min), močivost uzoraka je porasla pri povećanom tlaku argona. Razlog tome je stvaranje hidrofilnih grupa koje su bile brojnije pri povećanoj gustoći elektrona i/ili metastabila

    Proučavanje optičkih vlakana sa skokovitim indeksima loma interferometrijskom metodom s dva snopa

    Get PDF
    The Pluta polarizing interference microscope is used to measure the refractive index profile and material dispersion of step index optical fibers. The refractive index profile of the fiber has been determined experimentally at different wavelengths using two-beam interference technique. Measuring these values at different wavelengths gives useful information about the structural behavior of highly oriented fibers. Also, the theoretical consideration for determining the refractive index is given. Some optical parameters which characterize the optical fiber such as the numerical aperture NA, normalized frequency ν, the acceptance angle θa and the number of modes MN propagating in the fiber with wavelength have been calculated. Also, the constants of the Cauchy’s dispersion formula were determined.Primijenili smo Plutinov polarizacijski interferometrijski mikroskop u mjerenjima profila indeksa loma i disperzije materijala optičkih vlakana sa skokovitim indeksima loma. Mjerili smo profil indeksa vlakna za više valnih duljina primjenom interferentne metode s dva snopa. Ta mjerenja na više valnih duljina dala su važne podatke o strukturnim svojstvima jako usmjerenih vlakana. Opisuju se također osnove teorije za određivanje indeksa loma u vlaknima. Izračunali smo niz optičkih parametara koji su značajke optičkih vlakana: brojnog otvora, normalizirane frekvencije, ν, kuta prihvaćanja, θa, i broja modova, MN , kojima se na nekoj frekvenciji šire valovi. Također smo odredili konstante Cauchyjeve disperzijske formule

    Mjerenje raspodjele elektronske energije u dvama područjima istosmjernog magnetrona za rasprašivanje

    Get PDF
    The electron energy distribution function (EEDF) at the edge of the cathode fall and positive column regions of Ar and He glow discharge were measured using a single Langmuir probe. The EEDF in the cathode fall region was found to be non-Maxwellian where two groups of electrons were detected. The two groups have no chance to be thermalized since they leave the cathode fall region fast. Sources of the two groups of electrons are discussed. Moreover, EEDF in the positive column region was found to be Maxwellian for both gases. Electrons have a chance to thermalize themselves due to the long plasma lifetime in this region.Primjenom Langmuirove sonde mjerili smo funkciju raspodjele elektronske energije (EEDF) na rubu katodnog tamnog prostora i u pozitivnom stupcu tinjavog izboja u Ar i He. U katodnom tamnom prostoru našli smo ne-Maxwellov EEDF s dvjema grupama elektrona. Ove dvije grupe ne mogu se termalizirati jer brzo napuštaju prostor tinjavog izboja. Raspravljamo uzroke dviju grupa. Međutim, u pozitivnom stupcu smo našli Maxwellovu EEDF. U tom je području trajanje plazme dugo i elektroni se mogu termalizirati

    Površinska obrada polimera u tinjavom argonskom izboju

    Get PDF
    Surface treatment of polymer material (thin polyester samples) was performed in the DC glow discharge, using Ar gas. The effect of the experimental parameters of the glow discharge (the gas pressure and the sample treatment time) on the wettability of the samples was studied. The wettability was characterized by the water repellency (water spray test). In the present work, it was shown that at a constant gas pressure (270 or 670 Pa), the wettability of the polyester sample was decreased by increasing the exposure time of the sample in the glow discharge. At constant exposure times (2, 5, 10 or 15 min) the wettability of the polyester sample was increased by increasing the gas pressure. This is due to the formation of hydrophilic groups, which increased by increasing the density of electrons and/or metastables.Površinski smo obrađivali polimerni materijal (tanke uzorke poliestera) u istosmjernom tinjavom argonskom izboju. Proučavali smo učinke eksperimentalnih parametara izboja (tlaka plina i vremena izlaganja u izboju) na močivost uzoraka. Močivost smo određivali mjerenjem odbojnosti vode (metoda prskanjem vode). U ovom se radu pokazuje da se na stalnom tlaku plina (270 ili 670 Pa), močivost uzoraka poliestera smanjuje za dulja vremena izlaganja u izboju. Za određena vremena izlaganja (2, 5, 10 ili 15 min), močivost uzoraka je porasla pri povećanom tlaku argona. Razlog tome je stvaranje hidrofilnih grupa koje su bile brojnije pri povećanoj gustoći elektrona i/ili metastabila

    Mjerenje raspodjele elektronske energije u dvama područjima istosmjernog magnetrona za rasprašivanje

    Get PDF
    The electron energy distribution function (EEDF) at the edge of the cathode fall and positive column regions of Ar and He glow discharge were measured using a single Langmuir probe. The EEDF in the cathode fall region was found to be non-Maxwellian where two groups of electrons were detected. The two groups have no chance to be thermalized since they leave the cathode fall region fast. Sources of the two groups of electrons are discussed. Moreover, EEDF in the positive column region was found to be Maxwellian for both gases. Electrons have a chance to thermalize themselves due to the long plasma lifetime in this region.Primjenom Langmuirove sonde mjerili smo funkciju raspodjele elektronske energije (EEDF) na rubu katodnog tamnog prostora i u pozitivnom stupcu tinjavog izboja u Ar i He. U katodnom tamnom prostoru našli smo ne-Maxwellov EEDF s dvjema grupama elektrona. Ove dvije grupe ne mogu se termalizirati jer brzo napuštaju prostor tinjavog izboja. Raspravljamo uzroke dviju grupa. Međutim, u pozitivnom stupcu smo našli Maxwellovu EEDF. U tom je području trajanje plazme dugo i elektroni se mogu termalizirati

    Proučavanje optičkih vlakana sa skokovitim indeksima loma interferometrijskom metodom s dva snopa

    Get PDF
    The Pluta polarizing interference microscope is used to measure the refractive index profile and material dispersion of step index optical fibers. The refractive index profile of the fiber has been determined experimentally at different wavelengths using two-beam interference technique. Measuring these values at different wavelengths gives useful information about the structural behavior of highly oriented fibers. Also, the theoretical consideration for determining the refractive index is given. Some optical parameters which characterize the optical fiber such as the numerical aperture NA, normalized frequency ν, the acceptance angle θa and the number of modes MN propagating in the fiber with wavelength have been calculated. Also, the constants of the Cauchy’s dispersion formula were determined.Primijenili smo Plutinov polarizacijski interferometrijski mikroskop u mjerenjima profila indeksa loma i disperzije materijala optičkih vlakana sa skokovitim indeksima loma. Mjerili smo profil indeksa vlakna za više valnih duljina primjenom interferentne metode s dva snopa. Ta mjerenja na više valnih duljina dala su važne podatke o strukturnim svojstvima jako usmjerenih vlakana. Opisuju se također osnove teorije za određivanje indeksa loma u vlaknima. Izračunali smo niz optičkih parametara koji su značajke optičkih vlakana: brojnog otvora, normalizirane frekvencije, ν, kuta prihvaćanja, θa, i broja modova, MN , kojima se na nekoj frekvenciji šire valovi. Također smo odredili konstante Cauchyjeve disperzijske formule

    Mjerenje probojnih napona za više katodnih materijala u Townsendovom izboju

    Get PDF
    The breakdown potentials have been measured for argon and helium discharges using three different cathode materials: aluminium, silver and magnesium. The measurements show that lower breakdown potentials are associated with lower work function of the cathode material. For the three different cathodes, the secondary ionization coefficients have been estimated using the measured values of the breakdown potentials and the first ionization coefficient, in the range 0.60 to 2.25 V/[Pa cm] (80 to 300 V/[torr cm]) for Ar discharge and in the range of 0.15 to 1.80 V/[Pa cm] (20 to 240 V/[torr cm]) for He discharge. The minimum breakdown potential has been found at (pd)min = 80 Pa cm (0.6 torr cm) in Ar discharge and at 530 Pa cm (4.0 torr cm) in He discharge.Mjerili smo probojne potencijale za izboj u argonu i heliju s trima katodnim materijalima: aluminijem, srebrom i magnezijem. Mjerenja pokazuju da su niži probojni naponi povezani s nižim radnim funkcijama. Odredili smo sekundarne ionizacijske koeficijente za te tri vrste katoda na osnovi izmjerenih probojnih napona i prvih ionizacijskih koeficijenata, u području 0.60 to 2.25 V/[Pa cm] za izboj u Ar i u području 0.15 to 1.80 V/[Pa cm] za izboj u He. Najniži probojni napon za izboj u Ar iznosi (pd)min = 80 Pa cm, a za izboj u He 530 Pa cm (4.0 torr cm)

    Mjerenje probojnih napona za više katodnih materijala u Townsendovom izboju

    Get PDF
    The breakdown potentials have been measured for argon and helium discharges using three different cathode materials: aluminium, silver and magnesium. The measurements show that lower breakdown potentials are associated with lower work function of the cathode material. For the three different cathodes, the secondary ionization coefficients have been estimated using the measured values of the breakdown potentials and the first ionization coefficient, in the range 0.60 to 2.25 V/[Pa cm] (80 to 300 V/[torr cm]) for Ar discharge and in the range of 0.15 to 1.80 V/[Pa cm] (20 to 240 V/[torr cm]) for He discharge. The minimum breakdown potential has been found at (pd)min = 80 Pa cm (0.6 torr cm) in Ar discharge and at 530 Pa cm (4.0 torr cm) in He discharge.Mjerili smo probojne potencijale za izboj u argonu i heliju s trima katodnim materijalima: aluminijem, srebrom i magnezijem. Mjerenja pokazuju da su niži probojni naponi povezani s nižim radnim funkcijama. Odredili smo sekundarne ionizacijske koeficijente za te tri vrste katoda na osnovi izmjerenih probojnih napona i prvih ionizacijskih koeficijenata, u području 0.60 to 2.25 V/[Pa cm] za izboj u Ar i u području 0.15 to 1.80 V/[Pa cm] za izboj u He. Najniži probojni napon za izboj u Ar iznosi (pd)min = 80 Pa cm, a za izboj u He 530 Pa cm (4.0 torr cm)

    Proučavanje parametara rasprašivanja plazmom velike gustoće u koaksijalnom ubrzivaču plazme

    Get PDF
    Plasma accelerator was used for the deposition of a material powder placed at a breach. A capacitor bank of 46.26 µF charged to 3 kV (208.17 J) gave a peak current of 8.8 kA after 15 µs. Plasma inductance varied between 3 µH and 1.5 µH while the plasma resistance varied between 5 mΩ and 300 mΩ within one shot, while the electron temperature and plasma density near the substrate measured with a double electric probe was about 3 eV and 2.7 × 1013 cm−3 , respectively. Carbon plasma velocity at the muzzle was 6.0 cm/µs which agrees with calculations. The deposited graphite powder showed mostly a homogeneous distribution of clusters. The total efficiency of the system, considering both the internal and kinetic energy, was found to be 10.9 %.Rabili smo ubrzivač plazme za naparavanje praha postavljenog na otvoru za snop. Sklop kapacitora od 46.26 µF nabijen na 3 kV (208.2 J) davao je vršnu struju 8.8 kA nakon 15 µs. Indukcija plazme mijenjala se između 3 i 1.5 µH, a otpor plazme između 5 i 300 mΩ tijekom pojedinog palenja. Elektronska temperatura i gustoća plazme u blizini podloge, koje smo mjerili dvostrukom električnom sondom, iznose oko 3 eV odn. 2.7 × 1013 cm−3 . Brzina ugljične plazme kod otvora iznosi 6.0 cm/µs, u skladu s izračunatom vrijednošću. Naparen grafitni prah pokazuje većma jednoličnu raspodjelu nakupina. Ukupna učinkovitost sustava, ubrajajući unutarnju i kinetičku energiju, iznosi 10.9 %

    Proučavanje parametara rasprašivanja plazmom velike gustoće u koaksijalnom ubrzivaču plazme

    Get PDF
    Plasma accelerator was used for the deposition of a material powder placed at a breach. A capacitor bank of 46.26 µF charged to 3 kV (208.17 J) gave a peak current of 8.8 kA after 15 µs. Plasma inductance varied between 3 µH and 1.5 µH while the plasma resistance varied between 5 mΩ and 300 mΩ within one shot, while the electron temperature and plasma density near the substrate measured with a double electric probe was about 3 eV and 2.7 × 1013 cm−3 , respectively. Carbon plasma velocity at the muzzle was 6.0 cm/µs which agrees with calculations. The deposited graphite powder showed mostly a homogeneous distribution of clusters. The total efficiency of the system, considering both the internal and kinetic energy, was found to be 10.9 %.Rabili smo ubrzivač plazme za naparavanje praha postavljenog na otvoru za snop. Sklop kapacitora od 46.26 µF nabijen na 3 kV (208.2 J) davao je vršnu struju 8.8 kA nakon 15 µs. Indukcija plazme mijenjala se između 3 i 1.5 µH, a otpor plazme između 5 i 300 mΩ tijekom pojedinog palenja. Elektronska temperatura i gustoća plazme u blizini podloge, koje smo mjerili dvostrukom električnom sondom, iznose oko 3 eV odn. 2.7 × 1013 cm−3 . Brzina ugljične plazme kod otvora iznosi 6.0 cm/µs, u skladu s izračunatom vrijednošću. Naparen grafitni prah pokazuje većma jednoličnu raspodjelu nakupina. Ukupna učinkovitost sustava, ubrajajući unutarnju i kinetičku energiju, iznosi 10.9 %
    corecore