4 research outputs found
Constant and intermittent contact with the volatile organic compounds of Serendipita indica alleviate salt stress in vitro Ocimum basilicum L.
Serendipita indica is a plant growth-promoting fungus. It is a natural soil dweller that can colonize the roots of a wide range of plants, including cultivated crops. S. indica has been reported to improve plant nutrient uptake and increase stress tolerance when inoculated into the soil. The present study was undertaken to study the effect of volatile organic compounds (VOCs) of S. indica on salt-stressed Ocimum basilicum 'Fin vert' in vitro, either in a culture vessel with a semi-solid medium or via a modified temporary immersion bioreactor system (SETIS). For all salt concentrations, VOCs of S. indica significantly improved plant growth in both semi-solid medium and SETIS bioreactors. This resulted in heavier and taller plants, more shoots per plant, and longer roots. This was even observed for the control without salt. At 9 g/L NaCl, plants with Serendipita were able to give longer roots than those without (1.2 cm vs. 0.0 and 1.7 cm vs. 1.7 cm) in the semi-solid medium and SETIS, respectively. Nevertheless, the VOCs were not able to make the plant salt tolerant to this high concentration. The increase in total phenolic and flavonoid content and radical scavenging suggest that the antioxidant defense system is triggered by the S. indica VOCs. In the semi-solid system, without VOCs, 1 g/L NaCl led to an increase in total chlorophyll content (TCC) and a significant decrease in TCC was further measured only at 6 g/L NaCl or more. However, when VOCs were added, the bleaching effect of the salt was partially restored, even at 6 and 9 g/L NaCl. A significant decrease in TCC was also measured in the SETIS system at 6 g/L NaCl or more and treatment with VOC did not make any difference. An exception was 9 g/L, where the VOC-treated plants produced more than three times more chlorophyll than the non-treated plants. These findings will encourage the application of Serendipita indica for stress reduction. In addition, the proposed original adaptation of a temporary immersion system will be instrumental to investigate stress reduction associated with volatile compounds and better understand their mechanism of action
Effect of NaCl Priming on Seed Germination of Tunisian Fenugreek (Trigonella foenum-graecum L.) Under Salinity Conditions
Salinity is one major problem of increasing production in crop growing areas throughout the world. The objective of this research was to evaluate the effect of NaCl priming on seed germination of Tunisian fenugreek (Trigonella foenum-graecum L.) under salinity conditions. Seeds of fenugreek were primed with NaCl (4g/l) for 36 h in continuous 25°C. Experimental factors were included 2 priming treatments (NaCl and non-priming as control) and five salinity solution (4,6,8,10 and 12 gl-1). Results showed that seed priming increased final germination percentage, germination speed and radicle length over the non-primed treatment. At the lowest levels of salinity, there were no notable differences between primed and non-primed seeds, but with increasing salinity levels, primed seeds showed the better performance than non-primed seeds. These results indicated that NaCl priming significantly improved seed performance under salinity conditions
Rosemary as a Potential Source of Natural Antioxidants and Anticancer Agents: A Molecular Docking Study
Rosmarinus officinalis L. compounds, especially its main polyphenolic compounds, carnosic acid (CA) and rosmarinic acid (RA), influence various facets of cancer biology, making them valuable assets in the ongoing fight against cancer. These two secondary metabolites exhibit formidable antioxidant properties that are a pivotal contributor against the development of cancer. Their antitumor effect has been related to diverse mechanisms. In the case of CA, it has the capacity to induce cell death of cancer cells through the rise in ROS levels within the cells, the inhibition of protein kinase AKT, the activation of autophagy-related genes (ATG) and the disrupt mitochondrial membrane potential. Regarding RA, its antitumor actions encompass apoptosis induction through caspase activation, the inhibition of cell proliferation by interrupting cell cycle progression and epigenetic regulation, antioxidative stress-induced DNA damage, and interference with angiogenesis to curtail tumor growth. To understand the molecular interaction between rosemary compounds (CA and RA) and a protein that is involved in cancer and inflammation, S100A8, we have performed a series of molecular docking analyses using the available three-dimensional structures (PDBID: 1IRJ, 1MR8, and 4GGF). The ligands showed different binding intensities in the active sites with the protein target molecules, except for CA with the 1MR8 protein