28 research outputs found

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    Dickinson geothermal study. Final report

    No full text
    The Inyan Kara Formation provides an abundant source of warm (54 to 71/sup 0/C) but salty (7400 mg/l combined Na and Cl ions) water for much of southwestern North Dakota. The city of Dickinson, ND, overlies this aquifer at 1676 to 1768 meters. This study investigates the potential of usng this hydrothermal resource as an energy source for a district heating system in a new undeveloped addition to Dickinson. In addition, the use of a reverse osmosis system to desalinate the water is considered along with other water treatment processes necessary to allow use of this water in the existing city water supply. The results of the study indicate the economic requirements to make this concept feasible and outline the consideration to carry the project into the design phase

    Trace metal transformations in gasification

    No full text
    The Energy and Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems; (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions; and (3) identify methods to control trace element emissions. Results are presented and discussed on the partitioning of trace metals and the model design for predicting trace metals behavior

    Hybrid Modeling and Simulation of Biomolecular Networks

    No full text
    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by a network of chemical reactions in which regulatory proteins can control genes that produce other regulators, which in turn control other genes. Further, the feedback pathways appear to incorporate switches that result in changes in the dynamic behavior of the cell. This paper describes a hybrid systems approach to modeling the intra-cellular network using continuous di#erential equations to model the feedback mechanisms and mode-switching to describe the changes in the underlying dynamics. We use two case studies to illustrate a modular approach to modeling such networks and describe the architectural and behavioral hierarchy in the underlying models. We describe these models using Charon [2], a language that allows formal description of hybrid systems. We provide preliminary simulation results that demonstrate how our approach can help biologists in their analysis of noisy genetic circuits. Finally we describe our agenda for future work that includes the development of models and simulation for stochastic hybrid systems

    Characterization of the OxyR regulon of Neisseria gonorrhoeae

    No full text
    OxyR regulates the expression of the majority of H2O2 responses in Gram-negative organisms. In a previous study we reported the OxyR-dependent derepression of catalase expression in the human pathogen Neisseria gonorrhoeae. In the present study we used microarray expression profiling of N. gonorrhoeae wild-type strain 1291 and an oxyR mutant strain to define the OxyR regulon. In addition to katA (encoding catalase), only one other locus displayed a greater than two-fold difference in expression in the wild type : oxyR comparison. This locus encodes an operon of two genes, a putative peroxiredoxin/glutaredoxin (Prx) and a putative glutathione oxidoreductase (Gor). Mutant strains were constructed in which each of these genes was inactivated. A previous biochemical study in Neisseria meningitidis had confirmed function of the glutaredoxin/peroxiredoxin. Assay of the wild-type 1291 cell free extract confirmed Gor activity, which was lost in the gor mutant strain. Phenotypic analysis of the prx mutant strain in H2O2 killing assays revealed increased resistance, presumably due to upregulation of alternative defence mechanisms. The oxyR, prx and gor mutant strains were deficient in biofilm formation, and the oxyR and prx strains had decreased survival in cervical epithelial cells, indicating a key role for the OxyR regulon in these processes

    Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity

    No full text
    As a facultative aerobe with a high iron requirement and a highly active aerobic respiratory chain, Neisseria gonorrhoeae requires defence systems to respond to toxic oxygen species such as superoxide. It has been shown that supplementation of media with 100 muM Mn(II) considerably enhanced the resistance of this bacterium to oxidative killing by superoxide. This protection was not associated with the superoxide dismutase enzymes of N. gonorrhoeae. In contrast to previous studies, which suggested that some strains of N. gonorrhoeae might not contain a superoxide dismutase, we identified a sodB gene by genome analysis and confirmed its presence in all strains examined by Southern blotting, but found no evidence for sodA or sodC. A sodB mutant showed very similar susceptibility to superoxide killing to that of wild-type cells, indicating that the Fe-dependent SOD B did not have a major role in resistance to oxidative killing under the conditions tested. The absence of a sodA gene indicated that the Mn-dependent protection against oxidative killing was independent of Mn-dependent SOD A. As a sodB mutant also showed Mn-dependent resistance to oxidative killing, then it is concluded that this resistance is independent of superoxide dismutase enzymes. Resistance to oxidative killing was correlated with accumulation of Mn(II) by the bacterium. We hypothesize that this bacterium uses Mn(II) as a chemical quenching agent in a similar way to the already established process in Lactobacillus plantarum. A search for putative Mn(II) uptake systems identified an ABC cassette-type system (MntABC) with a periplasmic-binding protein (MntC). An mntC mutant was shown to have lowered accumulation of Mn(II) and was also highly susceptible to oxidative killing, even in the presence of added Mn(II). Taken together, these data show that N. gonorrhoeae possesses a Mn(II) uptake system that is critical for resistance to oxidative stress
    corecore