4 research outputs found

    Modulation of innate immune signaling by a Coxiella burnetii eukaryotic-like effector protein

    Full text link
    International audienceThe Q fever agent Coxiella burnetii uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating C. burnetii effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran. Interestingly, NopA triggers an accumulation of Ran-GTP, which accumulates at nucleoli of transfected or infected cells, thus perturbing the nuclear import of transcription factors of the innate immune signaling pathway. Accordingly, qRT-PCR analysis on a panel of cytokines shows that cells exposed to the C. burnetii nopA::Tn or a Dot/Icm-defective dotA::Tn mutant strain present a functional innate immune response, as opposed to cells exposed to wild-type C. burnetii or the corresponding nopA complemented strain. Thus, NopA is an important regulator of the innate immune response allowing Coxiella to behave as a stealth pathogen

    Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis

    Full text link
    International audienceKi-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial–mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses

    MIRS: an imaging spectrometer for the MMX mission

    Full text link
    International audienceThe MMX infrared spectrometer (MIRS) is an imaging spectrometer onboard MMX JAXA mission. MMX (Martian Moon eXploration) is scheduled to be launched in 2024 with sample return to Earth in 2029. MIRS is built at LESIA-Paris Observatory in collaboration with four other French laboratories, collaboration and financial support of CNES and close collaboration with JAXA and MELCO. The instrument is designed to fully accomplish MMX's scientific and measurement objectives. MIRS will remotely provide near-infrared spectral maps of Phobos and Deimos containing compositional diagnostic spectral features that will be used to analyze the surface composition and to support the sampling site selection. MIRS will also study Mars atmosphere, in particular spatial and temporal changes such as clouds, dust and water vapor
    corecore