155 research outputs found

    Photochemical routes to silicon epitaxy

    Get PDF
    The photochemistry of Si2H6 adsorbed on a hydrogen terminated silicon surface and the subsequentreactions of the photolysis products were investigated using high resolution electron energy lossspectroscopy and by measuring time-of-flight distributions with a mass spectrometer. The crackingpattern of the products ejected directly into the gas phase without colliding with either the surfaceor other molecules indicates that the primary photolysis channels yield mostly fragments thatcontain one silicon atom. It is likely that silicon is added to the surface by insertion of SiH2 radicalsinto Si–H bonds at the surface but there is little evidence for reactions that remove excess hydrogenfrom the surface at 110

    Hydrogen adsorption on and desorption from Si: Considerations on the applicability of detailed balance

    Get PDF
    The translational energy of D2 desorbed from Si(100) and Si(111) surfaces was measured and found roughly equal to the thermal expectation at the surface temperature Ts. Combining these results with previously measured internal state distributions, the total energy of the desorbed molecules is approximately equal to the equilibrium expectation at Ts. Thus adsorption experiments, which suggest a large energetic barrier, are at variance with desorption experiments, which exhibit a trivial adsorption barrier, and the applicability of detailed balance for this system needs to be reexamined

    The adsorbate state specific photochemistry of dioxygen on Pd(111)

    Get PDF
    The ultraviolet‐photochemistry of molecularly adsorbed oxygen on Pd(111) has been studied using pulsed laser light with 6.4 eV photon energy. Three processes occur upon irradiation: desorption of molecular oxygen, conversion between adsorption states, and dissociation to form adsorbed atomic oxygen. By using time‐of‐flight spectroscopy to detect the desorbing molecular oxygen and post‐irradiation thermal desorption spectroscopy (TDS) to characterize the adsorbate state, a detailed picture of the photochemical processes is obtained. The data indicate that the O2 molecules desorbing with low translational energies from the saturated surface as well as the conversion of adsorbed molecules between binding states are induced by the photoinduced build‐up of atomic oxygen on the surface. Analysis of a proposed reaction model reproduces the observed data and yields detailed rates. Polarization analysis indicates that the photochemical processes are initiated by electronic excitations of the substrate

    Isotope and Quantum Effects in Vibrational State Distributions of Photodesorbed Ammonia

    Get PDF
    A marked quantum effect has been observed in the vibrational state distribution of photodesorbed ammonia. Namely, for quantum numbers larger than zero, symmetric and antisymmetric levels in the ν2 mode of the desorbed ammonia molecule are unequally populated. A strong propensity for symmetric levels is observed for NH3, whereas the reverse is found for ND3. Model calculations reproduce this effect. Moreover, it is found that the actual ratios probe the binding energy in the energetically less favorable inverted geometry with the H atoms pointing towards the surface

    Catalytic Thermal Decomposition of NO2 by Iron(III) Nitrate Nonahydrate-Doped Poly(Vinylidene Difluoride)

    Get PDF
    The products of thermal decomposition of iron nitrate nonahydrate doped into poly(vinylidene difluoride) are examined using Mössbauer spectroscopy. Very little of the expected nitrogen dioxide product is observed, which is attributed to Fe3+ catalysis of the decomposition of NO2. The active site of the catalysis is shown to be Fe(OH)3 in the polymer matrix, which is, unexpectedly, reduced to Fe(OH)2. Thermodynamic calculations show that the reduction of Fe3+ is exergonic at sufficiently high temperatures. A reaction sequence, including a catalytic cycle for decomposition of NO2, is proposed that accounts for the observed reaction products. The role of the polymer matrix is proposed to inhibit transport of gas-phase products, which allows them to interact with Fe(OH)3 doped in the polymer

    Biomolecular motor-driven microtubule translocation in the presence of shear flow: analysis of redirection behaviours

    Full text link
    We suggest a concept for powering microfluidic devices with biomolecular motors and microtubules to meet the demands for highly efficient microfluidic devices. However, to successfully implement such devices, we require methods for active control over the direction of microtubule translocation. While most previous work has employed largely microfabricated passive mechanical patterns designed to guide the direction of microtubules, in this paper we demonstrate that hydrodynamic shear flow can be used to align microtubules translocating on a kinesin-coated surface in a direction parallel to the fluid flow. Our evidence supports the hypothesis that the mechanism of microtubule redirection is simply that drag force induced by viscous shear bends the leading end of a microtubule, which may be cantilevered beyond its kinesin supports. This cantilevered end deflects towards the flow direction, until it is subsequently bound to additional kinesins; as translocation continues, the process repeats until the microtubule is largely aligned with the flow, to a limit determined by random fluctuations created by thermal energy. We present statistics on the rate of microtubule alignment versus various strengths of shear flow as well as concentrations of kinesin, and also investigate the effects of shear flow on the motility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58134/2/nano7_2_025101.pd

    Biomolecular motor-driven molecular sorter

    Get PDF
    We have developed a novel, microfabricated, stand-alone microfluidic device that can efficiently sort and concentrate (bio-)analyte molecules by using kinesin motors and microtubules as a chemo-mechanical transduction machine. The device removes hundreds of targeted molecules per second from an analyte stream by translocating functionalized microtubules with kinesin across the stream and concentrating them at a horseshoe-shaped collector. Target biomolecule concentrations increase up to three orders of magnitude within one hour of operation.close191
    corecore