3 research outputs found

    Application of Structural Optimization for an Early Stage Product Development

    No full text
    In today’s automotive industry there is a growing demand for more fuel efficient vehicles and reduced development times. These trends are driven by stricter environmental regulations, a growing environmental awareness, and increasing technological development and competitiveness. Finding an optimized and balanced component that fulfils the requirements in an early phase of the product development is a prerequisite for enabling more competitive lead times, costs, weights and minimizing the risk for late design changes. The aim with this paper is to show a process capturing CAE driven development for an early stage development of components in a complex system. The process utilizes structural optimization techniques to generate knowledge, optimize and balance packaging volumes of adjacent components in complex systems. The paper also highlight the organizational challenges and technical challenges involving the use of structural optimization for realizing the process completely. The paper will illustrate the simultaneous use of topology and shape optimization to generate knowledge for the optimized design volume for multiple adjacent components linked together. The linking of the multiple component is carried out using morphing technique and the design space between the multiple components is dynamic in nature during simulation. The mesh in one component is allowed to change according to the mesh of the other component during the simulation. The result from the simultaneous topology and shape optimization simulation generates the knowledge if it is feasible to change design volume to meet the weight and performance targets. The process also indicates how much performance increase is possible if the design volume is allowed to change and thus generating a trade-off between the components performance.The new process has a potential to be extended to other conflicting scenarios in adjacent components which exists in early stages of development process especially, cases involving conflicting structural requirements in various industries

    Safe Efficient Vehicle Solutions -On Driving Forces for Future Road Transportations

    No full text
    The primary objective of this paper is to present the most relevant factors and driving forces that influence future sustainable road transportations and exemplify how they may influence the development. The research methodology used is explorative scenarios where data collected from workshops, expert panels and surveys lay the foundations for the explanatory models [1]. Several driving forces are identified. However, two of them are found to be more important for the study as they have a strong influence on the development of the road transport system; yet it is uncertain how these driving forces will develop. The first of these driving forces is the ability of the authorities to take an active role when developing a sustainable transport system and the second how actively people will demand and support changes in the vehicles and the transport system. Four different future road transportation scenarios have been created to explore how changes in these two driving forces will influence the development of vehicles and road transport system; these scenarios are explained together with characteristics of future road transportation solutions. It is concluded that plans for technology development need to consider the uncertainties of these driving forces in order to enable creation of robust development roadmaps

    Safe Efficient Vehicle Solutions -On Driving Forces for Future Road Transportations

    No full text
    The primary objective of this paper is to present the most relevant factors and driving forces that influence future sustainable road transportations and exemplify how they may influence the development. The research methodology used is explorative scenarios where data collected from workshops, expert panels and surveys lay the foundations for the explanatory models [1]. Several driving forces are identified. However, two of them are found to be more important for the study as they have a strong influence on the development of the road transport system; yet it is uncertain how these driving forces will develop. The first of these driving forces is the ability of the authorities to take an active role when developing a sustainable transport system and the second how actively people will demand and support changes in the vehicles and the transport system. Four different future road transportation scenarios have been created to explore how changes in these two driving forces will influence the development of vehicles and road transport system; these scenarios are explained together with characteristics of future road transportation solutions. It is concluded that plans for technology development need to consider the uncertainties of these driving forces in order to enable creation of robust development roadmaps
    corecore