3 research outputs found

    Microencapsulation of Bacillus velezensis Using Alginate-Gum Polymers Enriched with TiO2 and SiO2 Nanoparticles

    Get PDF
    Bacillus bacteria are a group of plant growth stimulants that increase plant growth and resistance to plant pathogens by producing various metabolites. With their large surface area and small size, nanoparticles can be used in controlled-release formulations and increase the efficiency of the desired product. Encapsulation of biological agents in combination with nanoparticles can be an essential step in increasing the performance of these agents in adverse environmental conditions. In this study, which is the result of a collaboration between scientists from Italy and Iran, Bacillus velezensis was encapsulated in alginate combined with whey protein and zedo, mastic, and tragacanth gums in the presence of silica and titania nanoparticles to obtain two-layer and multilayer assemblies acting as novel, smart micro-encapsulation systems. The results of laboratory studies showed that the B. velezensis could produce protease, lipase, siderophore, auxin, and a dissolution of mineral phosphate. Scanning electron microscopy images (SEM) showed that the studied microcapsules were almost spherical. Moisture affinity, swelling, and efficiency of each microcapsule were examined. The results showed that the highest encapsulation efficiency (94.3%) was related to the multilayer formulation of alginate-whey protein-zedo. XRD and FTIR spectroscopy showed that the alginate, whey protein, and zedo were mixed properly and no incompatible composition occurred in the reaction. This study aimed to provide a suitable formulation of biofertilizers based on biodegradable compounds as an alternative to chemical fertilizers, which is low cost and very effective without harming humans and the environment

    Application of Green Gold NanopArticles in Cancer Therapy and Diagnosis

    No full text
    NanopArticles are currently used for cancer theranostics in the clinical field. Among nanopArticles, gold nanopArticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.Community of Madrid; University of Alcala [EPU-INV/2020/012]Financial support from the Community of Madrid within the framework of the Multiyear Agreement with the University of Alcala for Stimulus to Excellence for Permanent University Professors, Ref. EPU-INV/2020/012 is gratefully acknowledged

    Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis

    No full text
    Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms
    corecore