4 research outputs found

    Effects of Noncontact Shoulder Tool Velocities on Friction Stir Joining of Polyamide 6 (PA6)

    No full text
    In this study, the effects of the traverse and rotational velocities of the noncontact shoulder tool on the heat generation and heated flux during the friction stir joining of high-density polyamide 6 (PA6) polymer were investigated. The computational fluid dynamics (CFD) method was employed to simulate the thermomechanical phenomena during the friction stir joining (FSJ) process of PA6. A developed model was used to consider the void formation and thermochemical properties of PA6. The surface and internal heat flow, material flow, and geometry of the joint were simulated, and an experimental study evaluated the simulation results. The simulation results indicated that the stir zone formed was smaller than regular joints with a noncontact shoulder tool. Despite the polymer’s traditional FSJ, heat generation and material flow do not differ significantly between advancing and retreating sides. On the other hand, the surface flow is not formed, and the surface temperature gradient is in a narrow line behind the tool. The material velocity increased at higher rotational speed and lower transverse velocity and in the stir zone with more giant geometry forms. The maximum generated heat was 204 °C, and the maximum material velocity was predicted at 0.44 m/s in the stir zone, achieved at 440 rpm and 40 mm/min tool velocities

    Analysis of Surface Texture and Roughness in Composites Stiffening Ribs Formed by SPIF Process

    No full text
    Studying roughness parameters and the topography of stiffening ribs in composite sandwich structures is important for understanding these materials’ surface quality and mechanical properties. The roughness parameters describe the micro-geometry of the surface, including the average height deviation, roughness depth, and waviness. The topography of the surface refers to the spatial arrangement and distribution of features such as bumps, ridges, and valleys. The study investigated the roughness parameters under three scenarios based on two SPIF process parameters: tool rotational speed(N) and feed rate (f). The vertical step was held constant at 0.4 mm across all scenarios. In scenario A, the process parameters were set at f = 300 mm/min and n = 300 rpm; in scenario B, f = 1500 mm/min and n = 3000 rpm; and in scenario C, f = 1500 mm/min and n = 300 rpm. The experimental research topography analyses revealed that the surface roughness of the stiffened ribs was highly dependent on the SPIF process parameters. The highest feed rate and tool rotational speed produced the smoothest surface texture with the lowest maximum height (Sz) value. In contrast, the lowest feed rate and tool rotational speed resulted in a rougher surface texture with a higher maximum height (Sz) value. Furthermore, the contour plots generated from the topography analyses provided a good visual representation of the surface texture and roughness, allowing for a more comprehensive analysis of the SPIF process parameters. This study emphasizes optimizing the SPIF process parameters to achieve the desired surface quality and texture of stiffened ribs formed in Litecor® panel sheets

    Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy

    No full text
    This article aims to study water-cooling effects on residual stress friction stir welding (FSW) of AA6068-T6 aluminum alloy. For this reason, the FSW and submerged FSW processes are simulated by computational fluid dynamic (CFD) method to study heat generation. The increment hole drilling technique was used to measure the residual stress of welded samples. The simulation results show that materials softening during the FSW process are more than submerged. This phenomenon caused the residual stress of the joint line in the submerged case to be lower than in the regular FSW joint. On the other hand, the results revealed that the maximum residual stresses in both cases are below the yielding strength of the AA6068-T6 aluminum alloy. The results indicated that the residual stress along the longitudinal direction of the joint line is much larger than the transverse direction in both samples

    The Effects of Pin Profile on HDPE Thermomechanical Phenomena during FSW

    No full text
    Friction stir welding (FSW) of polymeric materials has recently attracted significant attention. Herein, we present the effect of the tool pin profile on the FSW of high-density polyethylene (HDPE) joints through joint experimental analysis and thermomechanical simulations. For analysis of pin profile effects on the thermomechanical properties of HDPE joints, frustum (FPT), cubic (CPT), and triangular (TPT) pin shapes were selected in this study. This research investigated the heat generation of the parts of the different tools as well as heat flux (internal and surface). The results revealed that the heat generation in pins with more edges (cubic (96 °C) and triangular (94 °C)) was greater than in pins with a smooth shape (frustum (91 °C)). The higher heat generation caused the heat flux on the surface of the HDPE from the cubic pin profile to be greater than for other joints. Due to the properties of HDPE, higher heat generation caused higher material velocity in the stirring zone, where the velocity of the materials in TPT, CPT, and FPT pins were 0.41 m/s, 0.42 m/s, and 0.4 m/s, respectively. The simulation results show sharp-edged pins, such as triangular and cubic, lead to over-stirring action and internal voids formed along the joint line. Furthermore, the simulation results indicated that the size of the stirred zones (SZs) of the FPT, TPT, and CPT samples were 17 mm2, 19 mm2, and 21 mm2, respectively, which is around three times the corresponding values in the HAZ
    corecore