7,992 research outputs found

    A Supervisory Control Algorithm Based on Property-Directed Reachability

    Full text link
    We present an algorithm for synthesising a controller (supervisor) for a discrete event system (DES) based on the property-directed reachability (PDR) model checking algorithm. The discrete event systems framework is useful in both software, automation and manufacturing, as problems from those domains can be modelled as discrete supervisory control problems. As a formal framework, DES is also similar to domains for which the field of formal methods for computer science has developed techniques and tools. In this paper, we attempt to marry the two by adapting PDR to the problem of controller synthesis. The resulting algorithm takes as input a transition system with forbidden states and uncontrollable transitions, and synthesises a safe and minimally-restrictive controller, correct-by-design. We also present an implementation along with experimental results, showing that the algorithm has potential as a part of the solution to the greater effort of formal supervisory controller synthesis and verification.Comment: 16 pages; presented at Haifa Verification Conference 2017, the final publication is available at Springer via https://doi.org/10.1007/978-3-319-70389-3_

    On entropy, specific heat, susceptibility and Rushbrooke inequality in percolation

    Full text link
    We investigate percolation, a probabilistic model for continuous phase transition (CPT), on square and weighted planar stochastic lattices. In its thermal counterpart, entropy is minimally low where order parameter (OP) is maximally high and vice versa. Besides, specific heat, OP and susceptibility exhibit power-law when approaching the critical point and the corresponding critical exponents α,β,γ\alpha, \beta, \gamma respectably obey the Rushbrooke inequality (RI) α+2β+γ≥2\alpha+2\beta+\gamma\geq 2. Their analogues in percolation, however, remain elusive. We define entropy, specific heat and redefine susceptibility for percolation and show that they behave exactly in the same way as their thermal counterpart. We also show that RI holds for both the lattices albeit they belong to different universality classes.Comment: 5 pages, 3 captioned figures, to appear as a Rapid Communication in Physical Review E, 201

    Emergence of fractal behavior in condensation-driven aggregation

    Full text link
    We investigate a model in which an ensemble of chemically identical Brownian particles are continuously growing by condensation and at the same time undergo irreversible aggregation whenever two particles come into contact upon collision. We solved the model exactly by using scaling theory for the case whereby a particle, say of size xx, grows by an amount αx\alpha x over the time it takes to collide with another particle of any size. It is shown that the particle size spectra of such system exhibit transition to dynamic scaling c(x,t)∼t−βϕ(x/tz)c(x,t)\sim t^{-\beta}\phi(x/t^z) accompanied by the emergence of fractal of dimension df=11+2αd_f={{1}\over{1+2\alpha}}. One of the remarkable feature of this model is that it is governed by a non-trivial conservation law, namely, the dfthd_f^{th} moment of c(x,t)c(x,t) is time invariant regardless of the choice of the initial conditions. The reason why it remains conserved is explained by using a simple dimensional analysis. We show that the scaling exponents β\beta and zz are locked with the fractal dimension dfd_f via a generalized scaling relation β=(1+df)z\beta=(1+d_f)z.Comment: 8 pages, 6 figures, to appear in Phys. Rev.

    Infusing known operators in convolutional neural networks for lateral strain imaging in ultrasound elastography

    Full text link
    Convolutional Neural Networks (CNN) have been employed for displacement estimation in ultrasound elastography (USE). High-quality axial strains (derivative of the axial displacement in the axial direction) can be estimated by the proposed networks. In contrast to axial strain, lateral strain, which is highly required in Poisson's ratio imaging and elasticity reconstruction, has a poor quality. The main causes include low sampling frequency, limited motion, and lack of phase information in the lateral direction. Recently, physically inspired constraint in unsupervised regularized elastography (PICTURE) has been proposed. This method took into account the range of the feasible lateral strain defined by the rules of physics of motion and employed a regularization strategy to improve the lateral strains. Despite the substantial improvement, the regularization was only applied during the training; hence it did not guarantee during the test that the lateral strain is within the feasible range. Furthermore, only the feasible range was employed, other constraints such as incompressibility were not investigated. In this paper, we address these two issues and propose kPICTURE in which two iterative algorithms were infused into the network architecture in the form of known operators to ensure the lateral strain is within the feasible range and impose incompressibility during the test phase.Comment: Accepted in MICCAI 202

    Scale-free network topology and multifractality in weighted planar stochastic lattice

    Full text link
    We propose a weighted planar stochastic lattice (WPSL) formed by the random sequential partition of a plane into contiguous and non-overlapping blocks and find that it evolves following several non-trivial conservation laws, namely ∑iNxin−1yi4/n−1\sum_i^N x_i^{n-1} y_i^{4/n-1} is independent of time ∀ n\forall \ n, where xix_i and yiy_i are the length and width of the iith block. Its dual on the other hand, obtained by replacing each block with a node at its center and common border between blocks with an edge joining the two vertices, emerges as a network with a power-law degree distribution P(k)∼k−γP(k)\sim k^{-\gamma} where γ=5.66\gamma=5.66 revealing scale-free coordination number disorder since P(k)P(k) also describes the fraction of blocks having kk neighbours. To quantify the size disorder, we show that if the iith block is populated with pi∼xi3p_i\sim x_i^3 then its distribution in the WPSL exhibits multifractality.Comment: 7 pages, 8 figures, To appear in New Journal of Physics (NJP
    • …
    corecore