3 research outputs found

    Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring

    Get PDF
    The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’ tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures

    A fuzzy expert system for automatic seismic signal classification

    No full text
    Automatic classification of seismic events is of great importance due to the large amount of data received continuously. Seismic analysts classify events by visual inspection and calculation of event signal characteristics. This process is subjective and demands hard work as well as a significant amount of time and considerable experience. A reliable automatic classification task considerably reduces the effort required and makes classification faster and more objective. The aim of this study is to develop a fuzzy rule based expert classification system that is able to imitate human reasoning and incorporate the analyst's knowledge of seismic event classification. The fundamental idea behind using this approach was motivated by the way in which human analysts classify seismic events based on a set of experiential rules. Additionally, this approach was chosen due to its interpretability and adjustability, as well as its ability to manage the complexity of real data. Relevant discriminant features are extracted from event signal. Using these features, the classification system was built based on the vote by multiple rule fuzzy reasoning method with three types of rules. Comparison of this method with the single winner classical fuzzy reasoning model was carried out. Classification results on real seismic data showed the robustness of the classifier and its capability to operate in on-line classification
    corecore