40 research outputs found

    Leishmania-Host Interactions—An Epigenetic Paradigm

    Get PDF
    Leishmaniasis is one of the major neglected tropical diseases, for which no vaccines exist. Chemotherapy is hampered by limited efficacy coupled with development of resistance and other side effects. Leishmania parasites elude the host defensive mechanisms by modulating their surface proteins as well as dampening the host's immune responses. The parasites use the conventional RNA polymerases peculiarly under different environmental cues or pressures such as the host's milieu or the drugs. The mechanisms that restructure post-translational modifications are poorly understood but altered epigenetic histone modifications are believed to be instrumental in influencing the chromatin remodeling in the parasite. Interestingly, the parasite also modulates gene expression of the hosts, thereby hijacking or dampening the host immune response. Epigenetic factor such as DNA methylation of cytosine residues has been incriminated in silencing of macrophage-specific genes responsible for defense against these parasites. Although there is dearth of information regarding the epigenetic alterations-mediated pathogenesis in these parasites and the host, the unique epigenetic marks may represent targets for potential anti-leishmanial drug candidates. This review circumscribes the epigenetic changes during Leishmania infection, and the epigenetic modifications they enforce upon the host cells to ensure a safe haven. The non-coding micro RNAs as post-transcriptional regulators and correlates of wound healing and toll-like receptor signaling, as well as prognostic biomarkers of therapeutic failure and healing time are also explored. Finally, we highlight the recent advances on how the epigenetic perturbations may impact leishmaniasis vaccine development as biomarkers of safety and immunogenicity

    Edible mushrooms as potential functional foods in amelioration of hypertension

    Get PDF
    Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ‐aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.Universidade de Vigo/CISU

    Poultry and Beef Meat as Potential Seedbeds for Antimicrobial Resistant Enterotoxigenic Bacillus Species: A Materializing Epidemiological and Potential Severe Health Hazard

    Get PDF
    Although Bacillus cereus is of particular concern in food safety and public health, the role of other Bacillus species was overlooked. Therefore, we investigated the presence of eight enterotoxigenic genes, a hemolytic gene and phenotypic antibiotic resistance profiles of Bacillusspecies in retail meat samples. From 255 samples, 124 Bacillus isolates were recovered, 27 belonged to B. cereusand 97 were non-B. cereus species. Interestingly, the non-B. cereus isolates carried the virulence genes and exhibited phenotypic virulence characteristics as the B. cereus. However, correlation matrix analysis revealed the B. cereus group positively correlates with the presence of the genes hblA, hblC, and plc, and the detection of hemolysis (p \u3c 0.05), while the other Bacillus sp. groups are negatively correlated. Tests for antimicrobial resistance against ten antibiotics revealed extensive drug and multi-drug resistant isolates. Statistical analyses didn’t support a correlation of antibiotic resistance to tested virulence factors suggesting independence of these phenotypic markers and virulence genes. Of special interest was the isolation of Paenibacillus alvei and Geobacillus stearothermophilus from the imported meat samples being the first recorded. The isolation of non-B. cereus species carrying enterotoxigenic genes in meat within Egypt, suggests their impact on food safety and public health and should therefore not be minimised, posing an area that requires further research

    Molecular characterization of antibiotic resistant Escherichia coli isolates recovered from food samples and outpatient Clinics, KSA

    No full text
    Multidrug-resistant Escherichia coli is one of the most important public health concern worldwide that can be transferred through the food of animal origin to human being causing serious infection. The genetic responsibility of such resistant genes (Plasmids, integrons, and transposons) can be easily transmitted from the resistant strain to another. Therefore, the main objectives of the study is the molecular characterization of the resistant Escherichia coli isolates recovered from food samples and human isolates collected from outpatient clinics, KSA especially the resistance strains against aminoglycoside resistance genes which are responsible for the resistance against gentamicin and the resistance caused β-lactamases genes. Examination of food samples revealed 120 Escherichia coli isolates (22.22%) (30 strains O26: K60, 28 strains O128: K67, 20 strains O111: K58, 18 strains O126: K58, 10 strains O55: K59, 9 strains O86: K61 and 5 strains O157: H7). All the strains were highly resistance to penicillin, amoxicillin-clavulanic and erythromycin with a percentage of 100%, while the resistance to gentamicin, ampicillin, oxytetracycline, chloramphenicol, norfloxacin, trimethoprim, and nalidixic acid were 83%, 75%, 65.3%, 55.8%, 36.5%, 30.7% and 26.9% respectively. On the other hand, 59.6% of tested strains were sensitive to ciprofloxacin. Positive amplification of 896 bp fragments specific for aacC2 genes were observed by PCR designated for the detection of the aminoglycoside resistance genes. Meanwhile, multiplex PCR designed to detect the ampicillin and amoxicillin-clavulanic acid resistant E. coli isolates revealed positive amplification of 516 bp fragments specific for BlaTEM gene with all the resistant strains to ampicillin and amoxicillin-clavulanic acid. Moreover, positive amplification of 392 bp fragments specific for BlaSHV resistant gene were observed with (60.52%) of E. coli isolate. While all the tested strains were negative for amplification of BlaOXA_1. Keywords: Multidrug-resistant, Escherichia coli, Shiga toxogenic, Aminoglycoside resistance, β-lactamase

    An Overview of Iron Oxide (Fe<sub>3</sub>O<sub>4</sub>) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications

    No full text
    Magnetic nanoparticles have been discovered to be promising materials for various biomedical applications; for example, they have been used for cancer detection, screening, and chemotherapy studies during the last few decades. Likewise, magnetic nanoparticles have significant antibacterial properties, and similarly, they can be applied for magnetic resonance imaging purposes. These sensors are meant to detect certain biomarkers, which are substances that can be linked to the beginning or progression of cancer both during and after therapy. Magnetic nanoparticles have several unique properties that are being employed widely in cancer therapy as drug delivery agents to precisely target the targeted spot using an external magnetic field in vivo. Magnetic resonance imaging can also be used in conjunction with antineoplastic drug treatment personalized to the individual. We have presented an overview of the different applications of magnetic nanoparticles as well as current breakthroughs in their development as antibacterial and cancer therapies in this review. In addition, the cancer targeting, possible toxicity, and degradability of these nanomaterials are briefly discussed

    Modulation of acute phase parameters of inflammation by probiotics in albino rats

    No full text
    We investigated the effect of the probiotic Lactobacillus acidophilus on acute phase parameters in infected animals and to evaluate its possible use as alternative to replace the classical anti-inflammatory drugs as a trial to avoid the side effect of these drugs and its disadvantages. Forty albino rats were divided into four groups, group A was given saline orally and kept as normal-control rats, group B was orally given Lactobacillus acidophilus at a dose regimen of 10 8 CFU/day and kept as normal-treated rats for 6 weeks, group C was experimentally infected with Salmonella typhimurium (0.2 mL of 1.5 × 10 8 CFU/mL) and received saline orally to be kept as diseased-control rats, while group D was orally given Lactobacillus acidophilus (10 8 CFU/day) for 6 weeks and experimentally infected with Salmonella typhimurium and kept as diseased-treated rats. Results of group D revealed significant decrease in ESR, fibrinogen, TIBC, UIBC, and ceruloplasmin, especially on the 34th day post infection. On the other hand, significant increase in total proteins, albumin, total iron, and transferrin saturation percentage was revealed, when compared with group C. These data indicate that the probiotic Lactobacillus acidophilus may alter acute phase proteins after infection and significantly reduce the degree of inflammation

    An Overview of Iron Oxide (Fe3O4) Nanoparticles: From Synthetic Strategies, Characterization to Antibacterial and Anticancer Applications

    No full text
    Magnetic nanoparticles have been discovered to be promising materials for various biomedical applications; for example, they have been used for cancer detection, screening, and chemotherapy studies during the last few decades. Likewise, magnetic nanoparticles have significant antibacterial properties, and similarly, they can be applied for magnetic resonance imaging purposes. These sensors are meant to detect certain biomarkers, which are substances that can be linked to the beginning or progression of cancer both during and after therapy. Magnetic nanoparticles have several unique properties that are being employed widely in cancer therapy as drug delivery agents to precisely target the targeted spot using an external magnetic field in vivo. Magnetic resonance imaging can also be used in conjunction with antineoplastic drug treatment personalized to the individual. We have presented an overview of the different applications of magnetic nanoparticles as well as current breakthroughs in their development as antibacterial and cancer therapies in this review. In addition, the cancer targeting, possible toxicity, and degradability of these nanomaterials are briefly discussed

    Absence of the mecA Gene in Methicillin Resistant Staphylococcus aureus Isolated from Different Clinical Specimens in Shendi City, Sudan

    No full text
    Absolute dependence on mecA gene as the defining standard in determining the resistance of S. aureus to methicillin became the subject of distrust by many researchers. The present study aimed to determine the frequency of mecA gene in methicillin resistant S. aureus (MRSA) isolates using polymerase chain reaction and to correlate its presence to conventional method. In this regard, two hundred S. aureus isolates were collected from patients with different diseases attending different hospitals in Shandi City, Sudan. Phenotypic Kirby-Bauer method confirmed the existence of methicillin resistant S. aureus in 61.5% of the subjected isolates with MICs ranging from 4 g/mL to 256 g/mL when using E-test. However, when amplifying a 310 bp fragment of the mecA gene by PCR, twelve out of the 123 MRSA isolates (9.8%) were mecA negative, whereas all the 77 methicillin sensitive S. aureus (MSSA) were mecA negative. In conclusion, this study drew attention to the credibility of the mecA gene and its usefulness in the detection of all MRSA strains without referring to the traditional methods. Hence, it is highly recommended to consider alternative mechanisms for -lactam resistance that may compete with mecA gene in the emergence of MRSA phenomenon in the community
    corecore