939 research outputs found
Molecular Memory with Atomically-Smooth Graphene Contacts
We report the use of bilayer graphene as an atomically-smooth contact for
nanoscale devices. A two-terminal Bucky ball (C60) based molecular memory is
fabricated with bilayer graphene as a contact on the polycrystalline nickel
electrode. Graphene provides an atomically-smooth covering over an otherwise
rough metal surface. The use of graphene additionally prohibits the
electromigration of nickel atoms into the C60 layer. The devices exhibit a
low-resistance state in the first sweep cycle and irreversibly switch to a high
resistance state at 0.8-1.2 V bias. The reverse sweep has a hysteresis behavior
as well. In the subsequent cycles, the devices retain the high-resistance
state, thus making it write-once read-many memory (WORM). The ratio of current
in low-resistance to high-resistance state is lying in 20-40 range for various
devices with excellent retention characteristics. Control sample without the
bilayer graphene shows random hysteresis and switching.Comment: 13 pages and 4 figure
Collective Modes of Massive Dirac Fermions in Armchair Graphene Nanoribbons
We report the plasmon dispersion characteristics of intrinsic and extrinsic
armchair graphene nanoribbons of atomic width N = 5 using a p_z-orbital tight
binding model with third-nearest-neighbor (3nn) coupling. The coupling
parameters are obtained by fitting the 3nn dispersions to that of an extended
Huckel theory. The resultant massive Dirac Fermion system has a band gap E_g
\approx 64 meV. The extrinsic plasmon dispersion relation is found to approach
a common dispersion curve as the chemical potential increases, whereas
the intrinsic plasmon dispersion relation is found to have both energy and
momentum thresholds. We also report an analytical model for the extrinsic
plasmon group velocity in the q \rightarrow 0 limit
Theoretical study of isolated dangling bonds, dangling bond wires, and dangling bond clusters on a H : Si(001)-(2x1) surface
We theoretically study the electronic band structure of isolated unpaired and paired dangling bonds (DBs), DB wires, and DB clusters on H:Si(001)-(2x1) surface using extended Huckel theory and report their effect on the Si band gap. We show that an isolated unpaired DB introduces a near-midgap state, whereas a paired DB leads to pi and pi(*) states, similar to those introduced by an unpassivated asymmetric dimer (AD) Si(001)-(2x1) surface. On the other hand, the surface state induced due to an unpaired DB wire in the direction along the dimer row (referred to as [(1) over bar 10]) has a large dispersion due to the strong coupling between the adjacent DBs, being 3.84 A apart. However, in the direction perpendicular to the dimer row (referred to as [110]), the DBs are 7.68 A apart and there is a reduced coupling between them due to exponential dependence of the wave function, leading to a small dispersion. Moreover, a paired DB wire in the [(1) over bar 10] direction introduces pi and pi(*) states similar to those of an AD surface, but with a large dispersion, and a paired DB wire in the [110] direction exhibits surface states with a smaller dispersion, as expected. Besides this, we report the electronic structure of different DB clusters, which exhibit states inside the band gap that can be interpreted as superpositions of states due to unpaired and paired DBs
Plasmon dispersion in semimetallic armchair graphene nanoribbons
The dispersion relations for plasmons in intrinsic and extrinsic semimetallic
armchair graphene nanoribbons (acGNR) are calculated in the random phase
approximation using the orthogonal p_z-orbital tight binding method. Our model
predicts new plasmons for acGNR of odd atomic widths N=5,11,17,... Our model
further predicts plasmons in acGNR of even atomic width N=2,8,14,... related to
those found using a Dirac continuum model, but with different quantitative
dispersion characteristics. We find that the dispersion of all plasmons in
semimetallic acGNR depends strongly on the localization of the p_z electronic
wavefunctions. We also find that overlap integrals for acGNR behave in a more
complex way than predicted by the Dirac continuum model, suggesting that these
plasmons will experience a small damping for all q not equal to 0. Plasmons in
extrinsic semimetallic acGNR with the chemical potential in the lowest
(highest) conduction (valence) band are found to have dispersion
characteristics nearly identical to their intrinsic counterparts, with
negligible differencs in dispersion arising from the slight differences in
overlap integrals for the interband and intraband transitions.Comment: 8 pages, 9 figure
- …