18,803 research outputs found

    MEASURING THE IMPACT OF ETHIOPIA'S NEW EXTENSION PROGRAM ON THE PRODUCTIVE EFFICIENCY OF FARMERS

    Get PDF
    This paper employed a robust stochastic efficiency decomposition technique that accounts for scale effects to derive the technical, allocative, and overall productive efficiency of two samples of farmers, participants and non-participants in the New Extension Program (NEP), in two agro-climatic zones in eastern Ethiopia. Using data for the 2001/2002 agricultural year, we find that both groups of farmers in the two zones have considerable overall productive inefficiencies. In the wet highlands, although the participants in NEP used a superior technology and have higher technical efficiencies, their allocative efficiencies turned out to be lower than the non-participant farmers, relative to their respective technologies. However, both groups exhibit similar productive efficiencies. In the dry lands, apart from using homogeneous production technologies, the two groups do not have significantly different technical and allocative efficiencies and that they have similar productive efficiencies. Therefore, we find no empirical evidence of a positive impact of NEP on overall productive efficiency in both agro-climatic zones. An investigation of the influence of several socio-economic and institutional factors revealed that education, credit, previous participation in extension programs, off-farm income and the share of the leading cropping system have a positive impact on efficiency.Teaching/Communication/Extension/Profession,

    On entropy, specific heat, susceptibility and Rushbrooke inequality in percolation

    Full text link
    We investigate percolation, a probabilistic model for continuous phase transition (CPT), on square and weighted planar stochastic lattices. In its thermal counterpart, entropy is minimally low where order parameter (OP) is maximally high and vice versa. Besides, specific heat, OP and susceptibility exhibit power-law when approaching the critical point and the corresponding critical exponents α,β,γ\alpha, \beta, \gamma respectably obey the Rushbrooke inequality (RI) α+2β+γ2\alpha+2\beta+\gamma\geq 2. Their analogues in percolation, however, remain elusive. We define entropy, specific heat and redefine susceptibility for percolation and show that they behave exactly in the same way as their thermal counterpart. We also show that RI holds for both the lattices albeit they belong to different universality classes.Comment: 5 pages, 3 captioned figures, to appear as a Rapid Communication in Physical Review E, 201

    Characterization of Freshwater Natural Dissolved Organic Matter (DOM): Mechanistic Explanations for Protective Effects Against Metaltoxicity and Direct Effects on Organisms

    Get PDF
    Dissolved organic matter (DOM) exerts direct and indirect influences on aquatic organisms. In order to better understand how DOM causes these effects, potentiometric titration was carried out for a wide range of autochthonous and terrigenous freshwater DOM isolates. The isolates were previously characterized by absorbance and fluorescence spectroscopy. Proton binding constants (pKa) were grouped into three classes:acidic (pKa ≤ 5), intermediate (5 \u3c pKa ≤ 8.5) and basic (pKa \u3e 8.5). Generally, the proton site densities (LT) showed maximum peaks at the acidic and basic ends around pKa values of 3.5 and 10, respectively. More variably positioned peaks occurred in the intermediate pKa range. The acid–base titrations revealed the dominance of carboxylic and phenolic ligands with a trend for more autochthonous sources to have higher total LT. A summary parameter, referred to as the Proton Binding Index (PBI), was introduced to summarize chemical reactivity of DOMs based on the data of pKa and LT. Then, the already published spectroscopic data were explored and the specific absorbance coefficient at 340 nm (i.e. SAC340), an index of DOM aromaticity,was found to exhibit a strong correlation with PBI. Thus, the tendencies observed in the literature that darker organic matter is more protective against metal toxicity and more effective in altering physiological processes in aquatic organisms can now be rationalized on a basis of chemical reactivity to protons

    The Influence of Dissolved Organic Matter (DOM) on Sodium Regulation and Nitrogenous Waste Excretion in the Zebrafish (Danio rerio)

    Get PDF
    Dissolved organic matter (DOM) is both ubiquitous and diverse in composition in natural waters, but its effects on the branchial physiology of aquatic organisms have received little attention relative to other variables (e.g. pH, hardness, salinity, alkalinity). Here, we investigated the effects of four chemically distinct DOM isolates (three natural, one commercial, ranging from autochthonous to highly allochthonous, all at ∼6 mg C l−1) on the physiology of gill ionoregulation and nitrogenous waste excretion in zebrafish acclimated to either circumneutral (7.0–8.0) or acidic pH (5.0). Overall, lower pH tended to increase net branchial ammonia excretion, net K+ loss and [3H]PEG-4000 clearance rates (indicators of transcellular and paracellular permeability, respectively). However, unidirectional Na+ efflux, urea excretion and drinking rates were unaffected. DOM sources tended to stimulate unidirectional Na+ influx rate and exerted subtle effects on the concentration-dependent kinetics of Na+ uptake, increasing maximum transport capacity. All DOM sources reduced passive Na+ efflux rates regardless of pH, but exerted negligible effects on nitrogenous waste excretion, drinking rate, net K+ loss or [3H]PEG4000 clearance, so the mechanism of Na+ loss reduction remains unclear. Overall, these actions appear beneficial to ionoregulatory homeostasis in zebrafish, and some may be related to physicochemical properties of the DOM sources. They are very different from those seen in a recent parallel study on Daphnia magna using the same DOM isolates, indicating that DOM actions may be both species and DOM specific

    Determinants of adoption and intensity of use of improved maize varieties in the Central Highlands of Ethiopia: A Tobit analysis

    Get PDF
    This study employed a Tobit model to examine factors that influence the adoption and intensity of utilisation of improved maize varieties in the West Shoa Zone in the central highlands of Ethiopia. The estimated results indicate that level of education, household labour, farm size, extension services, farm income, and timely availability of improved maize seeds significantly influence the adoption and intensity of use of improved maize. It also showed that the impact of off-farm income and age of the household head on adoption and intensity of use of improved maize seed was insignificant.Crop Production/Industries,

    Emergence of fractal behavior in condensation-driven aggregation

    Full text link
    We investigate a model in which an ensemble of chemically identical Brownian particles are continuously growing by condensation and at the same time undergo irreversible aggregation whenever two particles come into contact upon collision. We solved the model exactly by using scaling theory for the case whereby a particle, say of size xx, grows by an amount αx\alpha x over the time it takes to collide with another particle of any size. It is shown that the particle size spectra of such system exhibit transition to dynamic scaling c(x,t)tβϕ(x/tz)c(x,t)\sim t^{-\beta}\phi(x/t^z) accompanied by the emergence of fractal of dimension df=11+2αd_f={{1}\over{1+2\alpha}}. One of the remarkable feature of this model is that it is governed by a non-trivial conservation law, namely, the dfthd_f^{th} moment of c(x,t)c(x,t) is time invariant regardless of the choice of the initial conditions. The reason why it remains conserved is explained by using a simple dimensional analysis. We show that the scaling exponents β\beta and zz are locked with the fractal dimension dfd_f via a generalized scaling relation β=(1+df)z\beta=(1+d_f)z.Comment: 8 pages, 6 figures, to appear in Phys. Rev.

    Performance evaluation of an evolutionary multiobjective optimization based area partitioning and allocation approach

    Full text link
    © 2018 IEEE. An Area Partitioning and Allocation (APA) approach was presented in[1]. The approach focused on optimizing the coverage performance of Autonomous Industrial Robots (AIRs) using multiple conflicting objectives and Voronoi partitioning. However, questions related to the optimality, convergence, and consistency of the Pareto solutions were not studied in details. In this paper, Inverted Generational Distance (IGD) metric is used to verify the convergence of the Pareto front towards Pareto optimal front (PF∗). The consistency in obtaining similar Pareto fronts for independent optimization runs is studied. The computational complexity of the approach with respect to the size of the coverage area and the number of AIRs is also discussed. Two application scenarios are used in this research

    PPCPP: A Predator-Prey-Based Approach to Adaptive Coverage Path Planning

    Full text link
    © 2004-2012 IEEE. Most of the existing coverage path planning (CPP) algorithms do not have the capability of enabling a robot to handle unexpected changes in the coverage area of interest. Examples of unexpected changes include the sudden introduction of stationary or dynamic obstacles in the environment and change in the reachable area for coverage (e.g., due to imperfect base localization by an industrial robot). Thus, a novel adaptive CPP approach is developed that is efficient to respond to changes in real-time while aiming to achieve complete coverage with minimal cost. As part of the approach, a total reward function that incorporates three rewards is designed where the first reward is inspired by the predator-prey relation, the second reward is related to continuing motion in a straight direction, and the third reward is related to covering the boundary. The total reward function acts as a heuristic to guide the robot at each step. For a given map of an environment, model parameters are first tuned offline to minimize the path length while assuming no obstacles. It is shown that applying these learned parameters during real-time adaptive planning in the presence of obstacles will still result in a coverage path with a length close to the optimized path length. Many case studies with various scenarios are presented to validate the approach and to perform numerous comparisons
    corecore