98 research outputs found

    Spasticity of the gastrosoleus muscle is related to the development of reduced passive dorsiflexion of the ankle in children with cerebral palsy: A registry analysis of 2,796 examinations in 355 children

    Get PDF
    Background and purpose Spasticity and muscle contracture are two common manifestations of cerebral palsy (CP). A spastic muscle may inhibit growth in length of the muscle, but the importance of this relationship is not known. In 1994, a register and a healthcare program for children with CP in southern Sweden were initiated. The child's muscle tone according to the Ashworth scale and the ankle range of motion (ROM) is measured annually during the entire growth period. We have used these data to analyze the relationship between spasticity and ROM of the gastrosoleus muscle. Patients and methods All measurements in the total population of children with CP aged 0-18 years during the period January 1995 through June 2008 were analyzed. The study was based on 2,796 examinations in 355 children. In the statistical analysis, the effect of muscle tone on ROM was estimated using a random effects model. Results The range of dorsiflexion of the ankle joint decreased in the total material by mean 19 (95% CI: 14-24) degrees during the first 18 years of life. There was a statistically significant association between the ROM and the child's level of spasticity during the year preceding the ROM measurement. Interpretation Spasticity is related to the development of muscle contracture. In the treatment of children with CP, the spasticity, contracture, and strength of the gastrosoleus muscle must be considered together

    Development of spasticity with age in a total population of children with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of spasticity with age in children with cerebral palsy (CP) has, to our knowledge, not been studied before. In 1994, a register and a health care program for children with CP in southern Sweden were initiated. In the programme the child's muscle tone according to the modified Ashworth scale is measured twice a year until six years of age, then once a year. We have used this data to analyse the development of spasticity with age in a total population of children with cerebral palsy.</p> <p>Methods</p> <p>All measurements of muscle tone in the gastrocnemius-soleus muscle in all children with CP from 0 to 15 years during the period 1995–2006 were analysed. The CP subtypes were classified according to the Surveillance of Cerebral Palsy in Europe network system. Using these criteria, the study was based on 6218 examinations in 547 children. For the statistical analysis the Ashworth scale was dichotomized. The levels 0–1 were gathered in one category and levels 2–4 in the other. The pattern of development with age was evaluated using piecewise logistic regression in combination with Akaike's An Information Criterion.</p> <p>Results</p> <p>In the total sample the degree of muscle tone increased up to 4 years of age. After 4 years of age the muscle tone decreased each year up to 12 years of age. A similar development was seen when excluding the children operated with selective dorsal rhizotomy, intrathecal baclofen pump or tendo Achilles lengthening. At 4 years of age about 47% of the children had spasticity in their gastro-soleus muscle graded as Ashworth 2–4. After 12 years of age 23% of the children had that level of spasticity. The CP subtypes spastic bilateral and spastic unilateral CP showed the same pattern as the total sample. Children with dyskinetic type of CP showed an increasing muscle tone up to age 6, followed by a decreasing pattern up to age 15.</p> <p>Conclusion</p> <p>In children with CP, the muscle tone as measured with the Ashworth scale increases up to 4 years of age and then decreases up to 12 years of age. The same tendency is seen in all spastic subtypes. The findings may have implications both for clinical judgement and for research studies on spasticity treatment.</p

    Multifunctional Properties of Chicken Embryonic Prenatal Mesenchymal Stem Cells- Pluripotency, Plasticity, and Tumor Suppression

    Get PDF
    The chick embryo represents an accessible and economical in vivo model, which has long been used in developmental biology, gene expression analysis, and loss/gain of function experiments. In the present study, we assessed and characterized bone marrow derived mesenchymal stem cells from prenatal day 13 chicken embryos (chBMMSCs) and determined some novel properties. After assessing the mesenchymal stem cell (MSC) properties of these cells by the presence of their signature markers (CD 44, CD 73, CD 90, CD 105, and vimentin), we ascertained a very broad spectrum of multipotentiality as these MSCs not only differentiated into the classic tri-lineages of MSCs but also into ectodermal, endodermal, and mesodermal lineages such as neuron, hepatocyte, islet cell, and cardiac. In addition to wide plasticity, we detected the presence of several pluripotent markers such as Oct4, Sox2, and Nanog. This is the first study characterizing prenatal chBMMSCs and their ability to not only differentiate into mesenchymal lineages but also into all the germ cell layer lineages. Furthermore, our studies indicate that prenatal chBMMSCs derived from the chick provide an excellent model for multi-lineage development studies because of their broad plasticity and faithful reproduction of MSC traits as seen in the human. Here, we also present evidence for the first time that media derived from prenatal chBMMSC cultures have an anti-tumorigenic, anti-migratory, and pro-apoptotic effect on human tumors cells acting through the Wnt-ß-catenin pathway. These data confirm that chBMMSCs are enriched with factors in their secretome that are able to destroy tumor cells. This suggests a commonality of properties of MSCs across species between human and chicken

    Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC

    Get PDF
    The mesenchymal stroma harbors an important population of cells that possess stem cell-like characteristics including self renewal and differentiation capacities and can be derived from a variety of different sources. These multipotent mesenchymal stem cells (MSC) can be found in nearly all tissues and are mostly located in perivascular niches. MSC have migratory abilities and can secrete protective factors and act as a primary matrix for tissue regeneration during inflammation, tissue injuries and certain cancers

    Minimal Holocene retreat of large tidewater glaciers in Køge Bugt, southeast Greenland

    Get PDF
    Abstract Køge Bugt, in southeast Greenland, hosts three of the largest glaciers of the Greenland Ice Sheet; these have been major contributors to ice loss in the last two decades. Despite its importance, the Holocene history of this area has not been investigated. We present a 9100 year sediment core record of glaciological and oceanographic changes from analysis of foraminiferal assemblages, the abundance of ice-rafted debris, and sortable silt grain size data. Results show that ice-rafted debris accumulated constantly throughout the core; this demonstrates that glaciers in Køge Bugt remained in tidewater settings throughout the last 9100 years. This observation constrains maximum Holocene glacier retreat here to less than 6 km from present-day positions. Retreat was minimal despite oceanic and climatic conditions during the early-Holocene that were at least as warm as the present-day. The limited Holocene retreat of glaciers in Køge Bugt was controlled by the subglacial topography of the area; the steeply sloping bed allowed glaciers here to stabilise during retreat. These findings underscore the need to account for individual glacier geometry when predicting future behaviour. We anticipate that glaciers in Køge Bugt will remain in stable configurations in the near-future, despite the predicted continuation of atmospheric and oceanic warming

    Presenilin 2 Is the Predominant γ-Secretase in Microglia and Modulates Cytokine Release

    Get PDF
    Presenilin 1 (PS1) and Presenilin 2 (PS2) are the enzymatic component of the γ-secretase complex that cleaves amyloid precursor protein (APP) to release amyloid beta (Aβ) peptide. PS deficiency in mice results in neuroinflammation and neurodegeneration in the absence of accumulated Aβ. We hypothesize that PS influences neuroinflammation through its γ-secretase action in CNS innate immune cells. We exposed primary murine microglia to a pharmacological γ-secretase inhibitor which resulted in exaggerated release of TNFα and IL-6 in response to lipopolysaccharide. To determine if this response was mediated by PS1, PS2 or both we used shRNA to knockdown each PS in a murine microglia cell line. Knockdown of PS1 did not lead to decreased γ-secretase activity while PS2 knockdown caused markedly decreased γ-secretase activity. Augmented proinflammatory cytokine release was observed after knockdown of PS2 but not PS1. Proinflammatory stimuli increased microglial PS2 gene transcription and protein in vitro. This is the first demonstration that PS2 regulates CNS innate immunity. Taken together, our findings suggest that PS2 is the predominant γ-secretase in microglia and modulates release of proinflammatory cytokines. We propose PS2 may participate in a negative feedback loop regulating inflammatory behavior in microglia

    Systemic therapy of Cushing’s syndrome

    Get PDF
    Cushing’s disease (CD) in a stricter sense derives from pathologic adrenocorticotropic hormone (ACTH) secretion usually triggered by micro- or macroadenoma of the pituitary gland. It is, thus, a form of secondary hypercortisolism. In contrast, Cushing’s syndrome (CS) describes the complexity of clinical consequences triggered by excessive cortisol blood levels over extended periods of time irrespective of their origin. CS is a rare disease according to the European orphan regulation affecting not more than 5/10,000 persons in Europe. CD most commonly affects adults aged 20–50 years with a marked female preponderance (1:5 ratio of male vs. female). Patient presentation and clinical symptoms substantially vary depending on duration and plasma levels of cortisol. In 80% of cases CS is ACTH-dependent and in 20% of cases it is ACTH-independent, respectively. Endogenous CS usually is a result of a pituitary tumor. Clinical manifestation of CS, apart from corticotropin-releasing hormone (CRH-), ACTH-, and cortisol-producing (malign and benign) tumors may also be by exogenous glucocorticoid intake. Diagnosis of hypercortisolism (irrespective of its origin) comprises the following: Complete blood count including serum electrolytes, blood sugar etc., urinary free cortisol (UFC) from 24 h-urine sampling and circadian profile of plasma cortisol, plasma ACTH, dehydroepiandrosterone, testosterone itself, and urine steroid profile, Low-Dose-Dexamethasone-Test, High-Dose-Dexamethasone-Test, after endocrine diagnostic tests: magnetic resonance imaging (MRI), ultra-sound, computer tomography (CT) and other localization diagnostics. First-line therapy is trans-sphenoidal surgery (TSS) of the pituitary adenoma (in case of ACTH-producing tumors). In patients not amenable for surgery radiotherapy remains an option. Pharmacological therapy applies when these two options are not amenable or refused. In cases when pharmacological therapy becomes necessary, Pasireotide should be used in first-line in CD. CS patients are at an overall 4-fold higher mortality rate than age- and gender-matched subjects in the general population. The following article describes the most prominent substances used for clinical management of CS and gives a systematic overview of safety profiles, pharmacokinetic (PK)-parameters, and regulatory framework
    corecore