69 research outputs found

    Critical data-based incremental cooperative communication for wireless body area network

    Get PDF
    Wireless Body Area Networks (WBANs) are single-hop network systems, where sensors gather the body’s vital signs and send them directly to master nodes (MNs). The sensors are distributed in or on the body. Therefore, body posture, clothing, muscle movement, body temperature, and climatic conditions generally influence the quality of the wireless link between sensors and the destination. Hence, in some cases, single hop transmission (‘direct transmission’) is not sufficient to deliver the signals to the destination. Therefore, we propose an emergency-based cooperative communication protocol for WBAN, named Critical Data-based Incremental Cooperative Communication (CD-ICC), based on the IEEE 802.15.6 CSMA standard but assuming a lognormal shadowing channel model. In this paper, a complete study of a system model is inspected in the terms of the channel path loss, the successful transmission probability, and the outage probability. Then a mathematical model is derived for the proposed protocol, end-to-end delay, duty cycle, and average power consumption. A new back-off time is proposed within CD-ICC, which ensures the best relays cooperate in a distributed manner. The design objective of the CD-ICC is to reduce the end-to-end delay, the duty cycle, and the average power transmission. The simulation and numerical results presented here show that, under general conditions, CD-ICC can enhance network performance compared to direct transmission mode (DTM) IEEE 802.15.6 CSMA and benchmarking. To this end, we have shown that the power saving when using CD-ICC is 37.5% with respect to DTM IEEE 802.15.6 CSMA and 10% with respect to MI-ICC

    Assessment of worn textile antennas’ exposure on the physiological parameters and well-being of adults

    Get PDF
    This paper presents the assessment of short-term wireless body area network (WBAN) exposure, which is operated at the industrial, scientific, and medical (ISM) band (2.45 GHz) in the vicinity of the human body. The experiment utilizes two popular textile antenna topologies, a planar monopole and a patch antenna as the radiating sources. The objective of this experiment is to investigate whether the exposure from WBAN may influence the physiological parameters (body temperature, blood pressure, and heart rate) and the well-being of the wearer. Counter-balanced, crossover, and the single-blind method was applied in the experimental setup. P-value is the probability value, under the assumption of no effect or no difference (the null hypothesis) of obtaining a result equal to or more extreme than what was actually observed. If P<; 0.05, it indicates that P-value will be less than the level of significance. Thus, the null hypothesis (no effect or no difference) can be rejected, and it can be concluded that there exist effects to the respondents. The results showed that there is statistically no significant difference between the active exposure and the Sham (no exposure) which may affect the physiological parameters and well-being of the wearers, with P>0.05, which failed to reject the null hypothesis (no effect)

    Enhancement of the duty cycle cooperative medium access control for wireless body area networks

    Get PDF
    This paper presents a novel energy-efficient and reliable connection to enhance the transmission of data over a shared medium for wireless body area networks (WBAN). We propose a novel protocol of two master nodes-based cooperative protocol. In the proposed protocol, two master nodes were considered, that is, the belt master node and the outer body master node. The master nodes work cooperatively to avoid the retransmission process by sensors due to fading and collision, reducing the bit error rate (BER), which results in a reduction of the duty cycle and average transmission power. In addition, we have also presented a mathematical model of the duty cycle with the proposed protocol for the WBAN. The results show that the proposed cooperative protocol reduced the BER by a factor of 4. The average transmission power is reduced by a factor of 0.21 and this shows the potential of the proposed technique to be used in future wearable wireless sensors and systems

    On Body Characterization for On-Body Radio Propagation Channel using Wearable Textile Monopole Antenna

    Get PDF
    This paper presents the experimental investigation of the characterization of the narrowband on-body radio propagation channel at 2.45 GHz. Wearable planar textile monopole antennas (TM) were used in this measurement campaign. The measurements were conducted in the RFshielded room environment, considering eight on-body radio links. A statistical analysis was conducted on the spectral parameters of the channel to enable the prediction and modeling of dynamic on-body radio propagation characteristics. The empirical data were fitted to several wellknown statistical models to determine the model that provided the best fit for the data. The results showed that the path loss exponent was consistent with the results of previous studies. The results also demonstrated that lognormal distribution was found to be the best fit for path loss in dynamic on-body radio propagation channel

    Radiation pattern reconfigurable fm antenna

    Get PDF
    In this work, a radiation pattern reconfigurable antenna design using compact printed spiral monopoles that operates at 102 MHz is reported. The proposed antenna changes its radiation behaviour that responds towards a desired direction with the use of RF switches. The antenna is printed on a 76.6mm × 50mm PCB layer providing more than 20MHz bandwidth at -10 dB threshold and is easily fabricated with low manufacturing cost. The antenna was also simulated on 500mm × 500mm ground plane that represents the roof top of a vehicl

    Non-Cooperative Game Theory Approach for Cognitive Cooperative Communication in WBAN

    Get PDF
    To increase the Quality of Service (QoS) of wireless body area network, we need an effective data-rate delivering method, which capably forwarding the data over several path. For this reason, we proposed a non-cooperative game approach, based on utilizing a pricing-based spectrum leasing mechanism to transmit the data over several path based on non-cooperative game theory. The parameter price c is together determined by WBAN sensor and D2D users. Then, all selected D2D users used optimized powers that can fulfil the need of the WBSN users. Numerical results show the proposed approach improves the utility of WBSN users and their throughput

    Single layer microwave absorber based on rice husk-mwcnts composites

    Get PDF
    In this paper, rice husk (RH) and multi-walled carbon nanotubes (MWCNTs) composite have been fabricated as single layer microwave absorber. The MWCNTs with various weight ratio composites with RH have been prepared. Three different weight ratio 3 wt% MWCNTs, 5 wt% MWCNTs, and 15 wt% MWCNTs of the RH-CNTs have been designed and fabricated. Moreover, the dielectric properties of different RH-CNTs specimens have been verified by using rectangular waveguide transmission line technique. Furthermore, the microwave absorption of these RH-CNTs has been analyzed using free space measurement and CST Microwave Studio (CST-MWS). The dielectric properties and microwave absorption of different RH-CNTs were investigated in 8.2-12.4 GHz (X-band). From the measurement, the dielectric properties parameter of RH-CNTs is analyzed. The dielectric constant and loss factor of the RH-CNTs composite increases with increasing of MWCNTs weight ratio. However, the magnetic properties of RH-CNTs remain constant, ur= 1-j0. The measurement and simulation result show that such RH-CNTs composites has excellent microwave absorption up to 33 dB in a certain frequency rang

    A Flexible and Compact Metamaterial UHF RFID Tag for Remote Sensing in Human Health

    Get PDF
    This paper presents a miniaturized UHF RFID tag antenna with increased gain using meander line techniques and metamaterial (MTM). The designed tag operates in the UHF RFID frequency band ranging from 860 to 960 MHz. It comprises of meandered lines with two hexagonal split ring resonators (H-SRRs) MTM cells. It is designed on a photo paper as its substrate which is 0.27 mm thick, with a dielectric constant of 3.2 and loss tangent of 0.05. Next, an RFID tag (NXP SL381213 UCODE G2iL chip) with an impedance of 23-j224 Ω is integrated with the proposed antenna to assess its performance in terms of reflection coefficient, antenna gain and maximum reading range. The overall size of the tag is 92 mm x26 mm

    Existing and emerging breast cancer detection technologies and its challenges: a review

    Get PDF
    Breast cancer is the most leading cancer occurring in women and is a significant factor in female mortality. Early diagnosis of breast cancer with Artificial Intelligent (AI) developments for breast cancer detection can lead to a proper treatment to affected patients as early as possible that eventually help reduce the women mortality rate. Reliability issues limit the current clinical detection techniques, such as Ultra-Sound, Mammography, and Magnetic Resonance Imaging (MRI) from screening images for precise elucidation. The capability to detect a tumor in early diagnosis, expensive, relatively long waiting time due to pandemic and painful procedure for a patient to perform. This article aims to review breast cancer screening methods and recent technological advancements systematically. In addition, this paper intends to explore the progression and challenges of AI in breast cancer detection. The next state of the art between image and signal processing will be presented, and their performance is compared. This review will facilitate the researcher to insight the view of breast cancer detection technologies advancement and its challenges
    corecore