50 research outputs found
A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition
Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The
plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis
of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread
action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have
characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain
regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and
memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and
investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm
synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key
characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical
description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to
test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked.
The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit
DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing
rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate
experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a
stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism
both at synaptic and network level
Cannabinoid-mediated short-term plasticity in hippocampus
Endocannabinoids modulate both excitatory and inhibitory neurotransmission in hippocampus via activation of pre-synaptic cannabinoid receptors. Here, we present a model for cannabinoid mediated short-term depression of excitation (DSE) based on our recently developed model for the equivalent phenomenon of suppressing inhibition (DSI). Furthermore, we derive a simplified formulation of the calcium-mediated endocannabinoid synthesis that underlies short-term modulation of neurotransmission in hippocampus. The simplified model describes cannabinoid-mediated short-term modulation of both hippocampal inhibition and excitation and is ideally suited for large network studies. Moreover, the implementation of the simplified DSI/DSE model provides predictions on how both phenomena are modulated by the magnitude of the pre-synaptic cell's activity. In addition we demonstrate the role of DSE in shaping the post-synaptic cell's firing behaviour qualitatively and quantitatively in dependence on eCB availability and the pre-synaptic cell's activity. Finally, we explore under which conditions the combination of DSI and DSE can temporarily shift the fine balance between excitation and inhibition. This highlights a mechanism by which eCBs might act in a neuro-protective manner during high neural activity
Endocannabinoids Generated by Ca2+ or by Metabotropic Glutamate Receptors Appear to Arise from Different Pools of Diacylglycerol Lipase
The identity and subcellular sources of endocannabinoids (eCBs) will shape their ability to affect synaptic transmission and, ultimately, behavior. Recent discoveries support the conclusion that 2-arachidonoyl glycerol, 2-AG, is the major signaling eCB, however, some important issues remain open. 2-AG can be synthesized by a mechanism that is strictly Ca2+-dependent, and another that is initiated by G-protein coupled receptors (GPCRs) and facilitated by Ca2+. An important question is whether or not the 2-AG in these cases is synthesized by the same pool of diacylglycerol lipase alpha (DAGLα). Using whole-cell voltage-clamp techniques in CA1 pyramidal cells in acute in vitro rat hippocampal slices, we investigated two mechanistically distinct eCB-mediated responses to address this issue. We now report that pharmacological inhibitors of DGLα have quantitatively different effects on eCB-mediated responses triggered by different stimuli, suggesting that functional, and perhaps physical, distinctions among pools of DAGLα exist
Molecular Components and Functions of the Endocannabinoid System in Mouse Prefrontal Cortex
Background. Cannabinoids have deleterious effects on prefrontal cortex (PFC)-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid) system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in the PFC are unknown. Methodology/Principal Findings. Here, using electron microscopy we found that key proteins involved in endocannabinoid signaling are expressed in layers V/VI of the mouse prelimbic area of the PFC: presynaptic cannabinoid CB1 receptors (CB1R) faced postsynaptic mGluR5 while diacylglycerol lipase alpha (DGL-alpha), the enzyme generating the endocannabinoid 2-arachidonoyl-glycerol (2-AG) was expressed in the same dendritic processes as mGluR5. Activation of presynaptic CB1R strongly inhibited evoked excitatory post-synaptic currents. Prolonged synaptic stimulation at 10Hz induced a profound long-term depression (LTD) of layers V/VI excitatory inputs. The endocannabinoid -LTD was presynaptically expressed and depended on the activation of postsynaptic mGluR5, phospholipase C and a rise in postsynaptic Ca2+ as predicted from the localization of the different components of the endocannabinoid system. Blocking the degradation of 2-AG (with URB 602) but not of anandamide (with URB 597) converted subthreshold tetanus to LTD-inducing ones. Moreover, inhibiting the synthesis of 2-AG with Tetrahydrolipstatin, blocked endocannabinoid-mediated LTD. All together, our data show that 2-AG mediates LTD at these synapses. Conclusions/Significance. Our data show that the endocannabinoid -retrograde signaling plays a prominent role in long-term synaptic plasticity at the excitatory synapses of the PFC. Alterations of endocannabinoid -mediated synaptic plasticity may participate to the etiology of PFC-related pathologies
Astrocyte signaling controls spike timing-dependent depression at neocortical synapses
Endocannabinoid mediated spike timing-dependent depression (t-LTD) is crucially involved in the development of the sensory neocortex. t-LTD at excitatory synapses in the developing rat barrel cortex requires cannabinoid CB(1) receptor (CB(1)R) activation, as well as activation of NMDA receptors located on the presynaptic terminal, but the exact signaling cascade leading to t-LTD remains unclear. We found that astrocytes are critically involved in t-LTD. Astrocytes gradually increased their Ca(2+) signaling specifically during the induction of t-LTD in a CB(1)R-dependent manner. In this way, astrocytes might act as a memory buffer for previous coincident neuronal activity. Following activation, astrocytes released glutamate, which activated presynaptic NMDA receptors to induce t-LTD. Astrocyte stimulation coincident with afferent activity resulted in long-term depression, indicating that astrocyte activation is sufficient for the induction of synaptic depression. Taken together, our findings describe the retrograde signaling cascade underlying neocortical t-LTD. The critical involvement of astrocytes in this process highlights their importance for experience-dependent sensory remodeling