20,950 research outputs found

    Coherent manipulation of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As with successive optical pumping

    Full text link
    We report dynamic control of magnetization precession by light alone. A ferromagnetic (Ga,Mn)As epilayer was used for experiments. Amplitude of precession was modulated to a large extent by tuning the time interval between two successive optical pump pulses which induced torques on magnetization through a non-thermal process. Nonlinear effect in precession motion was also discussed.Comment: 3 pages, 4 figures, Submitted to AP

    Effective Potential Study of the Chiral Phase Transition in a QCD-like Theory

    Full text link
    We construct the effective potential for a QCD-like theory using the auxiliary field method. The chiral phase transition exhibited by the model at finite temperature and the quark chemical potential is studied from the viewpoint of the shape change of the potential near the critical point. We further generalize the effective potential so as to have quark number and scalar quark densities as independent variables near the tri-critical point.Comment: 17 pages, 9 figures, using PTPTeX.cl

    Statistical mechanics and large-scale velocity fluctuations of turbulence

    Full text link
    Turbulence exhibits significant velocity fluctuations even if the scale is much larger than the scale of the energy supply. Since any spatial correlation is negligible, these large-scale fluctuations have many degrees of freedom and are thereby analogous to thermal fluctuations studied in the statistical mechanics. By using this analogy, we describe the large-scale fluctuations of turbulence in a formalism that has the same mathematical structure as used for canonical ensembles in the statistical mechanics. The formalism yields a universal law for the energy distribution of the fluctuations, which is confirmed with experiments of a variety of turbulent flows. Thus, through the large-scale fluctuations, turbulence is related to the statistical mechanics.Comment: 7 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    Temperature-dependent photoemission spectral weight transfer and chemical potential shift in Pr1x_{1-x}Cax_xMnO3_3 : Implications for charge density modulation

    Full text link
    We have studied the temperature dependence of the photoemission spectra of Pr1x_{1-x}Cax_xMnO3_3 (PCMO) with x=0.25x=0.25, 0.3 and 0.5. For x=0.3x=0.3 and 0.5, we observed a gap in the low-temperature CE-type charge-ordered (CO) phase and a pseudogap with a finite intensity at the Fermi level (EFE_F) in the high-temperature paramagnetic insulating (PI) phase. Within the CO phase, the spectral intensity near EFE_F gradually increased with temperature. These observations are consistent with the results of Monte Carlo simulations on a model including charge ordering and ferromagnetic fluctuations [H. Aliaga {\it et al.} Phys. Rev. B {\bf 68}, 104405 (2003)]. For x=0.25x=0.25, on the other hand, little temperature dependence was observed within the low-temperature ferromagnetic insulating (FI) phase and the intensity at EFE_F remained low in the high-temperature PI phase. We attribute the difference in the temperature dependence near EFE_F between the CO and FI phases to the different correlation lengths of orbital order between both phases. Furthermore, we observed a chemical potential shift with temperature due to the opening of the gap in the FI and CO phases. The doping dependent chemical potential shift was recovered at low temperatures, corresponding to the disappearance of the doping dependent change of the modulation wave vector. Spectral weight transfer with hole concentration was clearly observed at high temperatures but was suppressed at low temperatures. We attribute this observation to the fixed periodicity with hole doping in PCMO at low temperatures.Comment: 5pages, 7figure

    Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting β\beta-Pyrochlore KOs2_2O6_6

    Get PDF
    Microwave penetration depth λ\lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs2_2O6_6. Firm evidence for fully-gapped superconductivity is provided from λ(T)\lambda(T). Below the second transition at Tp8T_{\rm p}\sim 8 K, the superfluid density shows a step-like change with a suppression of effective critical temperature TcT_{\rm c}. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below TpT_{\rm p}.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Photo-induced precession of magnetization in ferromagnetic (Ga,Mn)As

    Full text link
    Precession of magnetization induced by pulsed optical excitation is observed in a ferromagnetic semiconductor (Ga,Mn)As by time-resolved magneto-optical measurements. It appears as complicated oscillations of polarization plane of linearly-polarized probe pulses, but is reproduced by gyromagnetic theory incorporating an impulsive change in an effective magnetic field due to changes in magnetic anisotropy. It is inferred from the shape of the impulse that the changes in anisotropy result from non-equilibrium carrier population: cooling of hot photo-carriers and subsequent annihilation of photo-carriers

    Dynamical electroweak symmetry breaking with superheavy quarks and 2+1 composite Higgs model

    Full text link
    Recently, a new class of models describing the quark mass hierarchy has been introduced. In this class, while the t quark plays a minor role in electroweak symmetry breaking (EWSB), it is crucial in providing the quark mass hierarchy. In this paper, we analyze the dynamics of a particular model in this class, in which the b' and t' quarks of the fourth family are mostly responsible for dynamical EWSB. The low energy effective theory in this model is derived. It has a clear signature, a 2 + 1 structure of composite Higgs doublets: two nearly degenerate \Phi_{b'} and \Phi_{t'}, and a heavier top-Higgs resonance \Phi_t \sim \bar{t}_{R}(t,b)_L. The properties of these composites are described in detail, and it is shown that the model satisfies the electroweak precision data constraints. The signatures of these composites at the Large Hadron Collider are briefly discussed.Comment: 17 pages, 3 figures; v.2: references and clarifications added: PRD versio

    Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles

    Full text link
    We have performed polarization-dependent ultrafast pump-probe spectroscopy of a film of aligned single-walled carbon nanotube bundles. By taking into account imperfect nanotube alignment as well as anisotropic absorption cross sections, we quantitatively determined distinctly different photo-bleaching dynamics for polarizations parallel and perpendicular to the tube axis. For perpendicular polarization, we observe a slow (1.0-1.5 ps) relaxation process, previously unobserved in randomly-oriented nanotube bundles. We attribute this slower dynamics to the excitation and relaxation of surface plasmons in the radial direction of the nanotube bundles.Comment: 4 pages, 3 figure
    corecore