74 research outputs found

    Identification of Autoantibodies against TRPM1 in Patients with Paraneoplastic Retinopathy Associated with ON Bipolar Cell Dysfunction

    Get PDF
    Background: Paraneoplastic retinopathy (PR), including cancer-associated retinopathy (CAR) and melanoma-associated retinopathy (MAR), is a progressive retinal disease caused by antibodies generated against neoplasms not associated with the eye. While several autoantibodies against retinal antigens have been identified, there has been no known autoantibody reacting specifically against bipolar cell antigens in the sera of patients with PR. We previously reported that the transient receptor potential cation channel, subfamily M, member 1 (TRPM1) is specifically expressed in retinal ON bipolar cells and functions as a component of ON bipolar cell transduction channels. In addition, this and other groups have reported that human TRPM1 mutations are associated with the complete form of congenital stationary night blindness. The purpose of the current study is to investigate whether there are autoantibodies against TRPM1 in the sera of PR patients exhibiting ON bipolar cell dysfunction. Methodology/Principal Findings: We performed Western blot analysis to identify an autoantibody against TRPM1 in the serum of a patient with lung CAR. The electroretinograms of this patient showed a severely reduced ON response wit

    Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine whether oral administration of geranylgeranylacetone (GGA), a nontoxic anti-ulcer drug that is an inducer of heat shock protein (HSP) 70, protects against drug-induced lung injury/fibrosis <it>in vivo</it>.</p> <p>Methods</p> <p>We used a bleomycin (BLM)-induced lung fibrosis model in which mice were treated with oral 600 mg/kg of GGA before and after BLM administration. Inflammation and fibrosis were evaluated by histological scoring, hydroxyproline content in the lung and inflammatory cell count, and quantification by ELISA of macrophage inflammatory protein-2 (MIP-2) in bronchoalveolar lavage fluid. Apoptosis was evaluated by the TUNEL method. The induction of HSP70 in the lung was examined with western blot analysis and its localization was determined by immunohistochemistry.</p> <p>Results</p> <p>We confirmed the presence of inflammation and fibrosis in the BLM-induced lung injury model and induction of HSP70 by oral administration of GGA. GGA prevented apoptosis of cellular constituents of lung tissue, such as epithelial cells, most likely related to the <it>de novo </it>induction of HSP70 in the lungs. GGA-treated mice also showed less fibrosis of the lungs, associated with the findings of suppression of both production of MIP-2 and inflammatory cell accumulation in the injured lung, compared with vehicle-treated mice.</p> <p>Conclusion</p> <p>GGA had a protective effect on drug-induced lung injury/fibrosis. Disease-modifying antirheumatic drugs such as methotrexate, which are indispensable for the treatment of rheumatoid arthritis, often cause interstitial lung diseases, an adverse event that currently cannot be prevented. Clinical use of GGA for drug-induced pulmonary fibrosis might be considered in the future.</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Pirfenidone as salvage treatment for refractory bleomycin-induced lung injury: a case report of seminoma

    No full text
    Abstract Background Bleomycin-induced lung injury, a major complication of chemotherapy for germ cell tumors, occasionally fails to respond to the standard treatment with corticosteroids and develops into severe respiratory insufficiency. Little is known about salvage treatment for refractory cases. Case presentation A 63-year-old man who had been diagnosed with stage I seminoma and undergone a high orchiectomy 1 year previously developed swelling of his left iliac lymph node and was diagnosed with a recurrence of the seminoma. He was administered a standard chemotherapy regimen of cisplatin, etoposide, and bleomycin. At the end of second cycle, he developed a dry cough and fever that was accompanied by newly-identified bilateral infiltrates on chest X-ray. Despite initiation of oral prednisolone, his exertional dyspnea and decline in pulmonary functions continued to be aggravated. High-dose pulse treatment with methylprednisolone was introduced and improved his symptoms and radiologic findings. However, the maintenance dose of oral prednisolone allowed reactivation of the disease with evidence of newly-developed bilateral lung opacities on high-resolution CT scans. Considering his glucose intolerance and cataracts as complications of corticosteroid treatment, administration of pirfenidone was initiated with the patient’s consent. Pirfenidone at 1800 mg/day was well tolerated, and resolved his symptoms and abnormal opacities on a chest CT scan. Subsequently, the dose of prednisolone was gradually tapered without worsening of the disease. At the most recent follow-up, he was still in complete remission of seminoma with a successfully tapered combination dose of prednisolone and pirfenidone. Conclusions Pirfenidone, a novel oral agent with anti-inflammatory and -fibrotic properties, should be considered as a salvage drug for refractory cases of bleomycin-induced lung injury
    corecore