191 research outputs found

    Cosmological Moduli Problem in Gauge-mediated Supersymmetry Breaking Theories

    Get PDF
    A generic class of string theories predicts the existence of light moduli fields, and they are expected to have masses mϕm_\phi comparable to the gravitino mass m3/2m_{3/2} which is in a range of 10210^{-2}keV--1GeV in gauge-mediated supersymmetry breaking theories. Such light fields with weak interactions suppressed by the Planck scale can not avoid some stringent cosmological constraints, that is, they suffer from `cosmological moduli problems'. We show that all the gravitino mass region 10210^{-2}keV m3/2\lesssim m_{3/2} \lesssim 1GeV is excluded by the constraints even if we incorporate a late-time mini-inflation (thermal inflation). However, a modification of the original thermal inflation model enables the region 10210^{-2}keV m3/2\lesssim m_{3/2} \lesssim 500keV to survive the constraints. It is also stressed that the moduli can be dark matter in our universe for the mass region 10210^{-2}keV mϕ\lesssim m_\phi \lesssim 100keV.Comment: A few changes in section IV and

    Ghost D-branes

    Full text link
    We define a ghost D-brane in superstring theories as an object that cancels the effects of an ordinary D-brane. The supergroups U(N|M) and OSp(N|M) arise as gauge symmetries in the supersymmetric world-volume theory of D-branes and ghost D-branes. A system with a pair of D-brane and ghost D-brane located at the same location is physically equivalent to the closed string vacuum. When they are separated, the system becomes a new brane configuration. We generalize the type I/heterotic duality by including n ghost D9-branes on the type I side and by considering the heterotic string whose gauge group is OSp(32+2n|2n). Motivated by the type IIB S-duality applied to D9- and ghost D9-branes, we also find type II-like closed superstrings with U(n|n) gauge symmetry.Comment: 49 pages, 6 figures, harvmac. v2: references and acknowledgements adde
    corecore