5,415 research outputs found

    Possibility of observing MSSM charged Higgs in association with a W boson at LHC

    Full text link
    Possibility of observing associated production of charged Higgs and W boson in the framework of MSSM at LHC is studied. Both leptonic and hadronic decays of W boson are studied while the charged Higgs boson is considered to decay to a τ\tau lepton and a neutrino. Therefore two search categories are defined based on the leptonic and hadronic final states, i.e. ℓτ+ETmiss\ell \tau+E^{miss}_{T} and jjτ+ETmissjj \tau+E^{miss}_{T} where ℓ=e\ell=e or μ\mu and jj is a light jet from WW decay. The discovery chance of the two categories is evaluated at an integrated luminosity of 300 \invfb at LHC. It is shown that both leptonic and hadronic final states have the chance of discovery at high \tanb. Finally 5σ5\sigma and 3σ3\sigma contours are provided for both search categories.Comment: 20 pages, 19 figure

    Coherent control of multipartite entanglement

    Full text link
    Quantum entanglement between an arbitrary number of remote qubits is examined analytically. We show that there is a non-probabilistic way to address in one context the management of entanglement of an arbitrary number of mixed-state qubits by engaging quantitative measures of entanglement and a specific external control mechanism. Both all-party entanglement and weak inseparability are considered. We show that for N≥4N\ge4, the death of all-party entanglement is permanent after an initial collapse. In contrast, weak inseparability can be deterministically managed for an arbitrarily large number of qubits almost indefinitely. Our result suggests a picture of the path that the system traverses in the Hilbert space

    Improved Bond Stress-Slip Relationships for CFRP-Strengthened Masonry Triplets

    Get PDF
    Carbon fibre-reinforced polymer (CFRP) emerges as a viable solution for reinforcing unreinforced masonry (URM) walls subjected to shear loads. While masonry structures are straightforward to construct, the complexity of the construction materials, especially in terms of their mechanical properties, poses challenges for numerical studies of their structural behaviour. Walls, being fundamental components in masonry construction, play a crucial role in transferring both horizontal and vertical lateral forces. This study investigates the enhancement of masonry wall behaviour through the reinforcement of CFRP. CFRP reinforcement increases ductility and strength, reducing the risk of failure under shear conditions. Additionally, CFRP composites present a practical solution to strengthening masonry structures compared to traditional reinforcement. However, brick, mortar, and CFRP have not been thoroughly investigated. Experimental tests on the bond behaviour of different configurations of CFRP-retrofitted masonry triplets have not been performed before and are therefore presented in this paper. Triplet specimens, comprising three bricks and two mortar joints, both with and without CFRP strengthening, were subjected to bond testing. The study affirms that masonry triplets strengthened with CFRP under shear loads exhibit strength levels at least four to six times greater than those without CFRP. The experimental work was carried out with eight different CFRP configurations on triplet masonry, and each test was repeated four times. Further, the bond stress-slip relationship in the case of masonry triplets with and without CFRP was predicted with new mathematical equations based on the conducted test results. These equations were included in the commercial finite element software ANSYS and used to conduct simulations of CFRP-reinforced masonry triplets. The numerical results indicate good agreement between the finite element model and the test results. The outcome of this research improves the current knowledge on the use of CFRP to reinforce masonry walls with brick and mortar, which will contribute to the understanding of the effect of CFRP on masonry structures.The outcome of this research improves the current knowledge on the use of CFRP to reinforce masonry walls with brick and mortar, which will contribute to the understanding of the effect of CFRP on masonry structures
    • …
    corecore