228 research outputs found

    The effects of perspective-taking on perceptual learning

    Get PDF
    Research in perceptual psychology and anthropology has demonstrated that experts will literally see objects and events in their domain differently than non-experts. Experts can make distinctions and notice subtleties that a novice does not perceive. Experts also have strategies for looking at data and artifacts in a domain; they know where to look so that they can answer the important questions. An expert perspective can be described as the ways of seeing and experiencing phenomena that are influenced by the specialized knowledge that an expert has. The present paper will survey the existing literature on perspective-taking and learning, with a short discussion at the end of some of the ways that existing technologies have been used to support the sharing of perspectives. Of particular interest in this paper is the potential to use new media technologies to convey the perspective of someone with specialized knowledge or insider information on an important event - a viewpoint that could be termed an "expert perspective"

    Model-Reference Adaptive Control of Distributed Lagrangian Infinite-Dimensional Systems Using Hamiltons Principle

    Get PDF
    This paper presents a Hamilton's principle for distributed control of infinite-dimensional systems modeled by a distributed form of the Euler-Lagrange method. The distributed systems are governed by a system of linear partial differential equations in space and time. A generalized potential energy expression is developed that can capture most physical systems including those systems that have no spatial distribution. The Hamilton's principle is applied to derive distributed feedback control methods without resorting to the standard weak-form discretization approach to convert an infinite-dimensional systems to a finite-dimensional systems. It can be shown by the principle of least action that the distributed control synthesized by the Hamilton's principle is a minimum-norm control. A model-reference adaptive control framework is developed for distributed Lagrangian systems in the presence of uncertainty. The theory is demonstrated by an application of adaptive flutter suppression control of a flexible aircraft wing

    Full Vehicle State Estimation Using a Holistic Corner-based Approach

    Get PDF
    Vehicles' active safety systems use different sensors, vehicle states, and actuators, along with an advanced control algorithm, to assist drivers and to maintain the dynamics of a vehicle within a desired safe range in case of instability in vehicle motion. Therefore, recent developments in such vehicle stability control and autonomous driving systems have led to substantial interest in reliable road angle and vehicle states (tire forces and vehicle velocities) estimation. Advances in applications of sensor technologies, sensor fusion, and cooperative estimation in intelligent transportation systems facilitate reliable and robust estimation of vehicle states and road angles. In this direction, developing a flexible and reliable estimation structure at a reasonable cost to operate the available sensor data for the proper functioning of active safety systems in current vehicles is a preeminent objective of the car manufacturers in dealing with the technological changes in the automotive industry. This thesis presents a novel generic integrated tire force and velocity estimation system at each corner to monitor tire capacities and slip condition individually and to address road uncertainty issues in the current model-based vehicle state estimators. Tire force estimators are developed using computationally efficient nonlinear and Kalman-based observers and common measurements in production vehicles. The stability and performance of the time-varying estimators are explored and it is shown that the developed integrated structure is robust to model uncertainties including tire properties, inflation pressure, and effective rolling radius, does not need tire parameters and road friction information, and can transfer from one car to another. The main challenges for velocity estimation are the lack of knowledge of road friction in the model-based methods and accumulated error in kinematic-based approaches. To tackle these issues, the lumped LuGre tire model is integrated with the vehicle kinematics in this research. It is shown that the proposed generic corner-based estimator reduces the number of required tire parameters significantly and does not require knowledge of the road friction. The stability and performance of the time-varying velocity estimators are studied and the sensitivity of the observers' stability to the model parameter changes is discussed. The proposed velocity estimators are validated in simulations and road experiments with two vehicles in several maneuvers with various driveline configurations on roads with different friction conditions. The simulation and experimental results substantiate the accuracy and robustness of the state estimators for even harsh maneuvers on surfaces with varying friction. A corner-based lateral state estimation is also developed for conventional cars application independent of the wheel torques. This approach utilizes variable weighted axles' estimates and high slip detection modules to deal with uncertainties associated with longitudinal forces in large steering. Therefore, the output of the lateral estimator is not altered by the longitudinal force effect and its performance is not compromised. A method for road classification is also investigated utilizing the vehicle lateral response in diverse maneuvers. Moreover, the designed estimation structure is shown to work with various driveline configurations such as front, rear, or all-wheel drive and can be easily reconfigured to operate with different vehicles and control systems' actuator configurations such as differential braking, torque vectoring, or their combinations on the front or rear axles. This research has resulted in two US pending patents on vehicle speed estimation and sensor fault diagnosis and successful transfer of these patents to industry

    Infrastructure-Aided Localization and State Estimation for Autonomous Mobile Robots

    Get PDF
    A slip-aware localization framework is proposed for mobile robots experiencing wheel slip in dynamic environments. The framework fuses infrastructure-aided visual tracking data (via fisheye lenses) and proprioceptive sensory data from a skid-steer mobile robot to enhance accuracy and reduce variance of the estimated states. The slip-aware localization framework includes: the visual thread to detect and track the robot in the stereo image through computationally efficient 3D point cloud generation using a region of interest; and the ego motion thread which uses a slip-aware odometry mechanism to estimate the robot pose utilizing a motion model considering wheel slip. Covariance intersection is used to fuse the pose prediction (using proprioceptive data) and the visual thread, such that the updated estimate remains consistent. As confirmed by experiments on a skid-steer mobile robot, the designed localization framework addresses state estimation challenges for indoor/outdoor autonomous mobile robots which experience high-slip, uneven torque distribution at each wheel (by the motion planner), or occlusion when observed by an infrastructure-mounted camera. The proposed system is real-time capable and scalable to multiple robots and multiple environmental cameras

    Kinematic and three-dimensional dynamic modeling of a biped robot

    Get PDF
    To view the final version of this © SAGE publication go here: https://doi.org/10.1177/1464419316645243This article focuses on inverse kinematic formulation and dynamic modeling of the Nao biped robot's lower body, accompanied by verification with the joints' angles as experimental data. Dynamic modeling in two different planes is discussed and joint angles for the given positions, nominal conditions, and trajectory computations are simulated and graphically illustrated. A new approach for development of the inverse dynamics on the aforementioned robot's lower body is proposed in this paper, analytically studied, and compared with MSC Adams for two various scenarios of fixed supporting leg and ground contact implementation
    corecore