17 research outputs found

    DNA instability in replicating Huntington's disease lymphoblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expanded CAG repeat in the Huntington's disease (HD) gene may display tissue-specific variability (e.g. triplet mosaicism) in repeat length, the longest mutations involving mitotic (germ and glial cells) and postmitotic (neurons) cells. What contributes to the triplet mutability underlying the development of HD nevertheless remains unknown. We investigated whether, besides the increased DNA instability documented in postmitotic neurons, possible environmental and genetic mechanisms, related to cell replication, may concur to determine CAG repeat mutability. To test this hypothesis we used, as a model, cultured HD patients' lymphoblasts with various CAG repeat lengths.</p> <p>Results</p> <p>Although most lymphoblastoid cell lines (88%) showed little or no repeat instability even after six or more months culture, in lymphoblasts with large expansion repeats beyond 60 CAG repeats the mutation size and triplet mosaicism always increased during replication, implying that the repeat mutability for highly expanded mutations may quantitatively depend on the triplet expansion size. None of the investigated genetic factors, potentially acting <it>in cis </it>to the mutation, significantly influence the repeat changes. Finally, in our experiments certain drugs controlled triplet expansion in two prone-to-expand HD cell lines carrying large CAG mutations.</p> <p>Conclusion</p> <p>Our data support quantitative evidence that the inherited CAG length of expanded alleles has a major influence on somatic repeat variation. The longest triplet expansions show wide somatic variations and may offer a mechanistic model to study triplet drug-controlled instability and genetic factors influencing it.</p

    New insights into repeat instability: Role of RNA•DNA hybrids

    No full text
    Expansion of tandem repeat sequences is responsible for more than 20 human diseases. Several cis elements and trans factors involved in repeat instability (expansion and contraction) have been identified. However no comprehensive model explaining large intergenerational or somatic changes of the length of the repeating sequences exists. Several lines of evidence, accumulated from different model studies, indicate that transcription through repeat sequences is an important factor promoting their instability. The persistent interaction between transcription template DNA and nascent RNA (RNA•DNA hybrids, R loops) was shown to stimulate genomic instability. Recently, we demonstrated that cotranscriptional RNA•DNA hybrids are preferentially formed at GC-rich trinucleotide and tetranucleotide repeat sequences in vitro as well as in human genomic DNA. Additionally, we showed that cotranscriptional formation of RNA•DNA hybrids at CTG•CAG and GAA•TTC repeats stimulate instability of these sequences in both E. coli and human cells. Our results suggest that persistent RNA•DNA hybrids may also be responsible for other downstream effects of expanded trinucleotide repeats, including gene silencing. Considering the extent of transcription through the human genome as well as the abundance of GC-rich and/or non-canonical DNA structure forming tandem repeats, RNA•DNA hybrids may represent a common mutagenic conformation. Hence, R loops are potentially attractive therapeutic targets in diseases associated with genomic instability

    Features of trinucleotide repeat instability in vivo

    No full text
    corecore