5 research outputs found

    Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    Get PDF
    A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs) in distribution networks by intelligent management of plug-in electric vehicle (PEV) storage. The proposed algorithm is defined to manage the reverse power flow (PF) from the distribution network to the upstream electrical system. Furthermore, a charging algorithm is proposed within the proposed optimization in order to assure PEV owner's quality of service (QoS). The method uses genetic algorithm (GA) to increase photovoltaic (PV) penetration without jeopardizing PEV owners' (QoS) and grid operating limits, such as voltage level of the grid buses. The method is applied to a part of the Danish low voltage (LV) grid to evaluate its effectiveness and capabilities. Different scenarios have been defined and tested using the proposed method. Simulation results demonstrate the capability of the algorithm in increasing solar power penetration in the grid up to 50%, depending on the PEV penetration level and the freedom of the system operator in managing the available PEV storage

    Modeling and control of fuel cells: distributed generation applications

    No full text

    Real-time optimal demand response for frequenc regulation in smart μgrid environment

    No full text
    Real-time demand response (DR) in smart μgrid has been shown to be an effective tool for frequency regulation with increased penetration of renewable energy resources into the grid. Since DR is recognized as an incentive or direct payment to the participants, it is consequently desired to minimize the cost of DR for the utility. This paper presents an optimal DR strategy for minimizing the cost of DR for the utility in smart grid era. The economic model developed by Pennsylvania/New Jersey/Maryland (PJM) utility in the USA is used on an IEEE 13-bus standard system. Simulation results verify the effectiveness of the proposed approach to minimize the cost of DR for the utility. It is also shown that the DR, with or without optimization, decreases the overall cost of frequency regulation for the utility compared to the conventional spinning reserve, without sacrificing system stability
    corecore