68 research outputs found

    Challenges of Internet of Things and Big Data Integration

    Full text link
    The Internet of Things anticipates the conjunction of physical gadgets to the In-ternet and their access to wireless sensor data which makes it expedient to restrain the physical world. Big Data convergence has put multifarious new opportunities ahead of business ventures to get into a new market or enhance their operations in the current market. considering the existing techniques and technologies, it is probably safe to say that the best solution is to use big data tools to provide an analytical solution to the Internet of Things. Based on the current technology deployment and adoption trends, it is envisioned that the Internet of Things is the technology of the future, while to-day's real-world devices can provide real and valuable analytics, and people in the real world use many IoT devices. Despite all the advertisements that companies offer in connection with the Internet of Things, you as a liable consumer, have the right to be suspicious about IoT advertise-ments. The primary question is: What is the promise of the Internet of things con-cerning reality and what are the prospects for the future.Comment: Proceedings of the International Conference on International Conference on Emerging Technologies in Computing 2018 (iCETiC '18), 23rd -24th August, 2018, at London Metropolitan University, London, UK, Published by Springer-Verla

    A Distributed Trust Framework for Privacy-Preserving Machine Learning

    Full text link
    When training a machine learning model, it is standard procedure for the researcher to have full knowledge of both the data and model. However, this engenders a lack of trust between data owners and data scientists. Data owners are justifiably reluctant to relinquish control of private information to third parties. Privacy-preserving techniques distribute computation in order to ensure that data remains in the control of the owner while learning takes place. However, architectures distributed amongst multiple agents introduce an entirely new set of security and trust complications. These include data poisoning and model theft. This paper outlines a distributed infrastructure which is used to facilitate peer-to-peer trust between distributed agents; collaboratively performing a privacy-preserving workflow. Our outlined prototype sets industry gatekeepers and governance bodies as credential issuers. Before participating in the distributed learning workflow, malicious actors must first negotiate valid credentials. We detail a proof of concept using Hyperledger Aries, Decentralised Identifiers (DIDs) and Verifiable Credentials (VCs) to establish a distributed trust architecture during a privacy-preserving machine learning experiment. Specifically, we utilise secure and authenticated DID communication channels in order to facilitate a federated learning workflow related to mental health care data.Comment: To be published in the proceedings of the 17th International Conference on Trust, Privacy and Security in Digital Business - TrustBus202

    Database NewSQL performance evaluation for big data in the public cloud

    Get PDF
    For very years, relational databases have been the leading model for data storage, retrieval and management. However, due to increasing needs for scalability and performance, alternative systems have emerged, namely NewSQL technology. NewSQL is a class of modern relational database management systems (RDBMS) that provide the same scalable performance of NoSQL systems for online transaction processing (OLTP) read-write workloads, while still maintaining the ACID guarantees of a traditional database system. In this research paper, the performance of a NewSQL database is evaluated, compared to a MySQL database, both running in the cloud, in order to measure the response time against different configurations of workloads.Instituto de Investigación en Informátic

    Using random forest and decision tree models for a new vehicle prediction approach in computational toxicology

    Get PDF
    yesDrug vehicles are chemical carriers that provide beneficial aid to the drugs they bear. Taking advantage of their favourable properties can potentially allow the safer use of drugs that are considered highly toxic. A means for vehicle selection without experimental trial would therefore be of benefit in saving time and money for the industry. Although machine learning is increasingly used in predictive toxicology, to our knowledge there is no reported work in using machine learning techniques to model drug-vehicle relationships for vehicle selection to minimise toxicity. In this paper we demonstrate the use of data mining and machine learning techniques to process, extract and build models based on classifiers (decision trees and random forests) that allow us to predict which vehicle would be most suited to reduce a drug’s toxicity. Using data acquired from the National Institute of Health’s (NIH) Developmental Therapeutics Program (DTP) we propose a methodology using an area under a curve (AUC) approach that allows us to distinguish which vehicle provides the best toxicity profile for a drug and build classification models based on this knowledge. Our results show that we can achieve prediction accuracies of 80 % using random forest models whilst the decision tree models produce accuracies in the 70 % region. We consider our methodology widely applicable within the scientific domain and beyond for comprehensively building classification models for the comparison of functional relationships between two variables

    Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector

    Get PDF
    YesThe prevalence of big data is starting to spread across the public and private sectors however, an impediment to its widespread adoption orientates around a lack of appropriate big data analytics (BDA) and resulting skills to exploit the full potential of big data availability. In this paper, we propose a novel BDA to contribute towards this void, using a fuzzy cognitive map (FCM) approach that will enhance decision-making thus prioritising IT service procurement in the public sector. This is achieved through the development of decision models that capture the strengths of both data analytics and the established intuitive qualitative approach. By taking advantages of both data analytics and FCM, the proposed approach captures the strength of data-driven decision-making and intuitive model-driven decision modelling. This approach is then validated through a decision-making case regarding IT service procurement in public sector, which is the fundamental step of IT infrastructure supply for publics in a regional government in the Russia federation. The analysis result for the given decision-making problem is then evaluated by decision makers and e-government expertise to confirm the applicability of the proposed BDA. In doing so, demonstrating the value of this approach in contributing towards robust public decision-making regarding IT service procurement.EU FP7 project Policy Compass (Project No. 612133

    A conceptual framework for the adoption of big data analytics by e-commerce startups: a case-based approach

    Get PDF
    E-commerce start-ups have ventured into emerging economies and are growing at a significantly faster pace. Big data has acted like a catalyst in their growth story. Big data analytics (BDA) has attracted e-commerce firms to invest in the tools and gain cutting edge over their competitors. The process of adoption of these BDA tools by e-commerce start-ups has been an area of interest as successful adoption would lead to better results. The present study aims to develop an interpretive structural model (ISM) which would act as a framework for efficient implementation of BDA. The study uses hybrid multi criteria decision making processes to develop the framework and test the same using a real-life case study. Systematic review of literature and discussion with experts resulted in exploring 11 enablers of adoption of BDA tools. Primary data collection was done from industry experts to develop an ISM framework and fuzzy MICMAC analysis is used to categorize the enablers of the adoption process. The framework is then tested by using a case study. Thematic clustering is performed to develop a simple ISM framework followed by fuzzy analytical network process (ANP) to discuss the association and ranking of enablers. The results indicate that access to relevant data forms the base of the framework and would act as the strongest enabler in the adoption process while the company rates technical skillset of employees as the most important enabler. It was also found that there is a positive correlation between the ranking of enablers emerging out of ISM and ANP. The framework helps in simplifying the strategies any e-commerce company would follow to adopt BDA in future. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature

    Custom Hardware Versus Cloud Computing in Big Data

    Get PDF
    The computational and data handling challenges in big data are immense yet a market is steadily growing traditionally supported by technologies such as Hadoop for management and processing of huge and unstructured datasets. With this ever increasing deluge of data we now need the algorithms, tools and computing infrastructure to handle the extremely computationally intense data analytics, looking for patterns and information pertinent to creating a market edge for a range of applications. Cloud computing has provided opportunities for scalable high-performance solutions without the initial outlay of developing and creating the core infrastructure. One vendor in particular, Amazon Web Services, has been leading this field. However, other solutions exist to take on the computational load of big data analytics. This chapter provides an overview of the extent of applications in which big data analytics is used. Then an overview is given of some of the high-performance computing options that are available, ranging from multiple Central Processing Unit (CPU) setups, Graphical Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and cloud solutions. The chapter concludes by looking at some of the state of the art solutions for deep learning platforms in which custom hardware such as FPGAs and Application Specific Integrated Circuits (ASICs) are used within a cloud platform for key computational bottlenecks

    Sensor networks and personal health data management: software engineering challenges

    Get PDF
    The advances of 5G, sensors, and information technologies enabled proliferation of smart pervasive sensor networks. 5G mobile networks provide low-power, high-availability, high density, and high-throughput data capturing by sensor networks and continuous streaming of multiple measured variables. Rapid progress in sensors that can measure vital signs, advances in the management of medical knowledge, and improvement of algorithms for decision support, are fueling a technological disruption to health monitoring. The increase in size and complexity of wireless sensor networks and expansion into multiple areas of health monitoring creates challenges for system design and software engineering practices. In this paper, we highlight some of the key software engineering and data-processing issues, along with addressing emerging ethical issues of data management. The challenges associated with ensuring high dependability of sensor network systems can be addressed by metamorphic testing. The proposed conceptual solution combines data streaming, filtering, cross-calibration, use of medical knowledge for system operation and data interpretation, and IoT-based calibration using certified linked diagnostic devices. Integration of blockchain technologies and artificial intelligence offers a solution to the increasing needs for higher accuracy of measurements of vital signs, high-quality decision-making, and dependability, including key medical and ethical requirements of safety and security of the data
    corecore