32 research outputs found

    A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in European American and African American families with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inability of aspirin (ASA) to adequately suppress platelet aggregation is associated with future risk of coronary artery disease (CAD). Heritability studies of agonist-induced platelet function phenotypes suggest that genetic variation may be responsible for ASA responsiveness. In this study, we leverage independent information from genome-wide linkage and association data to determine loci controlling platelet phenotypes before and after treatment with ASA.</p> <p>Methods</p> <p>Clinical data on 37 agonist-induced platelet function phenotypes were evaluated before and after a 2-week trial of ASA (81 mg/day) in 1231 European American and 846 African American healthy subjects with a family history of premature CAD. Principal component analysis was performed to minimize the number of independent factors underlying the covariance of these various phenotypes. Multi-point sib-pair based linkage analysis was performed using a microsatellite marker set, and single-SNP association tests were performed using markers from the Illumina 1 M genotyping chip from deCODE Genetics, Inc. All analyses were performed separately within each ethnic group.</p> <p>Results</p> <p>Several genomic regions appear to be linked to ASA response factors: a 10 cM region in African Americans on chromosome 5q11.2 had several STRs with suggestive (p-value < 7 × 10<sup>-4</sup>) and significant (p-value < 2 × 10<sup>-5</sup>) linkage to post aspirin platelet response to ADP, and ten additional factors had suggestive evidence for linkage (p-value < 7 × 10<sup>-4</sup>) to thirteen genomic regions. All but one of these factors were aspirin <it>response </it>variables. While the strength of genome-wide SNP association signals for factors showing evidence for linkage is limited, especially at the strict thresholds of genome-wide criteria (N = 9 SNPs for 11 factors), more signals were considered significant when the association signal was weighted by evidence for linkage (N = 30 SNPs).</p> <p>Conclusions</p> <p>Our study supports the hypothesis that platelet phenotypes in response to ASA likely have genetic control and the combined approach of linkage and association offers an alternative approach to prioritizing regions of interest for subsequent follow-up.</p

    Epistatic Association Mapping in Homozygous Crop Cultivars

    Get PDF
    The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM) approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs), environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted

    Design considerations in a sib-pair study of linkage for susceptibility loci in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern approaches to identifying new genes associated with disease allow very fine analysis of associaton and can be performed in population based case-control studies. However, the sibpair design is still valuable because it requires few assumptions other than acceptably high penetrance to identify genetic loci.</p> <p>Methods</p> <p>We conducted simulation studies to assess the impact of design factors on relative efficiency for a linkage study of colorectal cancer. We considered two test statistics, one comparing the mean IBD probability in affected pairs to its null value of 0.5, and one comparing the mean IBD probabilities between affected and discordant pairs. We varied numbers of parents available, numbers of affected and unaffected siblings, reconstructing the genotype of an unavailable affected sibling by a spouse and offspring, and elimination of sibships where the proband carries a mutation at another locus.</p> <p>Results</p> <p>Power and efficiency were most affected by the number of affected sibs, the number of sib pairs genotyped, and the risk attributable to linked and unlinked loci. Genotyping unaffected siblings added little power for low penetrance models, but improved validity of tests when there was genetic heterogeneity and for multipoint testing. The efficiency of the concordant-only test was nearly always better than the concordant-discordant test. Replacement of an unavailable affected sibling by a spouse and offspring recovered some linkage information, particularly if several offspring were available. In multipoint analysis, the concordant-only test was showed a small anticonservative bias at 5 cM, while the multipoint concordant-discordant test was generally the most powerful test, and was not biased away from the null at 5 cM.</p> <p>Conclusion</p> <p>Genotyping parents and unaffected siblings is useful for detecting genotyping errors and if allele frequencies are uncertain. If adequate allele frequency data are available, we suggest a single-point affecteds-only analysis for an initial scan, followed by a multipoint analysis of affected and unaffected members of all available sibships with additional markers around initial hits.</p

    Is exposure to formaldehyde in air causally associated with leukemia?—A hypothesis-based weight-of-evidence analysis

    Get PDF
    Recent scientific debate has focused on the potential for inhaled formaldehyde to cause lymphohematopoietic cancers, particularly leukemias, in humans. The concern stems from certain epidemiology studies reporting an association, although particulars of endpoints and dosimetry are inconsistent across studies and several other studies show no such effects. Animal studies generally report neither hematotoxicity nor leukemia associated with formaldehyde inhalation, and hematotoxicity studies in humans are inconsistent. Formaldehyde's reactivity has been thought to preclude systemic exposure following inhalation, and its apparent inability to reach and affect the target tissues attacked by known leukemogens has, heretofore, led to skepticism regarding its potential to cause human lymphohematopoietic cancers. Recently, however, potential modes of action for formaldehyde leukemogenesis have been hypothesized, and it has been suggested that formaldehyde be identified as a known human leukemogen. In this article, we apply our hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the large body of evidence regarding formaldehyde and leukemogenesis, attending to how human, animal, and mode-of-action results inform one another. We trace the logic of inference within and across all studies, and articulate how one could account for the suite of available observations under the various proposed hypotheses. Upon comparison of alternative proposals regarding what causal processes may have led to the array of observations as we see them, we conclude that the case fora causal association is weak and strains biological plausibility. Instead, apparent association between formaldehyde inhalation and leukemia in some human studies is better interpreted as due to chance or confounding

    Chemical carcinogenesis

    Full text link
    corecore