82 research outputs found

    Quantum speed limit time for the damped Jaynes-Cummings and Ohmic-like dephasing models in Schwarzschild spacetime

    Full text link
    Quantum theory sets the bound on the minimal evolution time between initial and final states of the quantum system. This minimal evolution time can be used to specify the maximal speed of the evolution in open and closed quantum systems. Quantum speed limit is one of the interesting issue in the theory of open quantum systems. One may investigate the influence of the relativistic effect on the quantum speed limit time. When several observers are placed in different inertial or non-inertial frames, or in Schwarzschild space-time, the relativistic effect should be taken into account. In this work, the quantum speed limit time in Schwarzschild space-time will be studied for two various model consist of damped Jaynes-Cummings and Ohmic-like dephasing. First, it will be observed that how quantum coherence is affected by Hawking radiation. According to the dependence of quantum speed limit time on quantum coherence and the dependence of quantum coherence on relative distance of quantum system to event horizon R0R_{0}, it will be represented that the quantum speed limit time in Schwarzschild space-time is decreased by increasing R0R_{0} for damped Jaynes-Cummings model and conversely, It is increased by increasing R0R_{0} for Ohmic-like dephasing model .Comment: 9 pages, 10 figures, comments and suggestions are welcom
    • …
    corecore