1,704 research outputs found

    Design and control of noise-induced synchronization patterns

    Full text link
    We propose a method for controlling synchronization patterns of limit-cycle oscillators by common noisy inputs, i.e., by utilizing noise-induced synchronization. Various synchronization patterns, including fully synchronized and clustered states, can be realized by using linear filters that generate appropriate common noisy signals from given noise. The optimal linear filter can be determined from the linear phase response property of the oscillators and the power spectrum of the given noise. The validity of the proposed method is confirmed by numerical simulations.Comment: 6 pages, 4 figure

    Structures and Functions of the Normal and Injured Human Olfactory Epithelium

    Get PDF
    The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection

    Anesthetized Animal Experiments for Neuroscience Research

    Get PDF
    Brain research has progressed with anesthetized animal experiments for a long time. Recent progress in research techniques allows us to measure neuronal activity in awake animals combined with behavioral tasks. The trends became more prominent in the last decade. This new research style triggers the paradigm shift in the research of brain science, and new insights into brain function have been revealed. It is reasonable to consider that awake animal experiments are more ideal for understanding naturalistic brain function than anesthetized ones. However, the anesthetized animal experiment still has advantages in some experiments. To take advantage of the anesthetized animal experiments, it is important to understand the mechanism of anesthesia and carefully handle the obtained data. In this minireview, we will shortly summarize the molecular mechanism of anesthesia in animal experiments, a recent understanding of the neuronal activities in a sensory system in the anesthetized animal brain, and consider the advantages and disadvantages of the anesthetized and awake animal experiments. This discussion will help us to use both research conditions in the proper manner

    Imaging the bone-immune cell interaction in bone destruction

    Get PDF
    Bone is a highly dynamic organ that is continuously being remodeled by the reciprocal interactions between bone and immune cells. We have originally established an advanced imaging system for visualizing the in vivo behavior of osteoclasts and their precursors in the bone marrow cavity using two-photon microscopy. Using this system, we found that the blood-enriched lipid mediator, sphingosine-1-phosphate, controlled the migratory behavior of osteoclast precursors. We also developed pH-sensing chemical fluorescent probes to detect localized acidification by bone-resorbing osteoclasts on the bone surface in vivo, and identified two distinct functional states of differentiated osteoclasts, “bone-resorptive” and “non-resorptive.” Here, we summarize our studies on the dynamics and functions of bone and immune cells within the bone marrow. We further discuss how our intravital imaging techniques can be applied to evaluate the mechanisms of action of biological agents in inflammatory bone destruction. Our intravital imaging techniques would be beneficial for studying the cellular dynamics in arthritic inflammation and bone destruction in vivo and would also be useful for evaluating novel therapies in animal models of bone-destroying diseases.Hasegawa T., Kikuta J., Ishii M.. Imaging the bone-immune cell interaction in bone destruction. Frontiers in Immunology 10, 596 (2019); https://doi.org/10.3389/fimmu.2019.00596

    Imaging the Bone-Immune Cell Interaction in Bone Destruction

    Get PDF
    Bone is a highly dynamic organ that is continuously being remodeled by the reciprocal interactions between bone and immune cells. We have originally established an advanced imaging system for visualizing the in vivo behavior of osteoclasts and their precursors in the bone marrow cavity using two-photon microscopy. Using this system, we found that the blood-enriched lipid mediator, sphingosine-1-phosphate, controlled the migratory behavior of osteoclast precursors. We also developed pH-sensing chemical fluorescent probes to detect localized acidification by bone-resorbing osteoclasts on the bone surface in vivo, and identified two distinct functional states of differentiated osteoclasts, “bone-resorptive” and “non-resorptive.” Here, we summarize our studies on the dynamics and functions of bone and immune cells within the bone marrow. We further discuss how our intravital imaging techniques can be applied to evaluate the mechanisms of action of biological agents in inflammatory bone destruction. Our intravital imaging techniques would be beneficial for studying the cellular dynamics in arthritic inflammation and bone destruction in vivo and would also be useful for evaluating novel therapies in animal models of bone-destroying diseases

    Vaginoplasty with an M-Shaped Perineo- Scrotal Flap in a Male-to-female Transsexual

    Get PDF
    To date, many techniques have been reported for vaginoplasty in male-to-female trans-sexual (MTFTS) patients, such as the use of a rectum transfer, a penile-scrotal flap and a reversed penile flap. However, none of these procedures is without its disadvantages. We developed a newly kind of flap for vaginoplasty, the M-shaped perineo-scrotal flap (M-shaped flap), using skin from both sides of the scrotum, shorn of hair by preoperative laser treatment. We applied this new type of flap in 7 MTFTS patients between January 2006 and January 2007. None of the flaps developed necrosis, and the patients could engage in sexual activity within 3 months of the operation. The M-shaped flap has numerous advantages: it can be elevated safely while retaining good vascularity, it provides for the construction of a sufficient deep vagina without a skin graft, the size of the flap is not influenced entirely by the length of the penis, and it utilizes skin from both sides of the scrotal area, which is usually excised.</p

    Efficacy of shared decision making on treatment satisfaction for patients with first-admission schizophrenia: study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Shared decision making is a promising model for patient-centred medicine, resulting in better clinical outcomes overall. In the mental health field, interventions that consider the patient-centred perspective—such as patient quality of life, involvement in the treatment, treatment satisfaction, and working alliance—have increased and better clinical outcomes discovered for patients with schizophrenia. However, few studies have examined the efficacy of shared decision making for schizophrenia treatment. The objective of this study is to evaluate the effect of a shared decision making intervention compared to treatment as usual on patient satisfaction at discharge for first-admission patients with schizophrenia. METHODS/DESIGN: This is a randomised, parallel-group, two-arm, open-label, single-centre study currently being conducted in an acute psychiatric ward of Numazu Chuo Hospital, Japan. We are recruiting patients between 16 and 65 years old who are admitted to the ward with a diagnosis of schizophrenia without prior experience of psychiatric admission. Fifty-eight participants are being randomised into a shared decision making intervention group or a treatment as usual control group in a 1:1 ratio. The intervention program was developed based on a shared decision making model and is presented as a weekly course lasting the duration of the patients’ acute psychiatric ward stay. The primary outcome measure is patient satisfaction at discharge as assessed by the Client Satisfaction Questionnaire. Due to the study’s nature, neither the patient nor staff can be blinded. DISCUSSION: This is the first randomised controlled trial to evaluate the efficacy of shared decision making for patients with early-treatment-stage schizophrenia. The intervention program in this study is innovative in that it includes both of the patient and staff who are involved in the treatment. TRIAL REGISTRATION: The study has been registered with ClinicalTrials.gov as NCT01869660

    Structures and functions of the normal and injured human olfactory epithelium

    Get PDF
    The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection
    corecore