15,389 research outputs found

    High Dynamic-Range and Very Low Noise K-Band p-HEMT LNA MMIC for LMDS and Satellite Communication

    Get PDF
    An excellent noise figure and high linearity, K-band p-HEMT LNA MMIC, that incorporates single-bias configuration and negative feedback circuit, has be en developed for LMDS (Local Multi-point Distribution Service) and satellite communication. The third order intercept point (IP3) of this MMIC is 20 dBm, while output power at 1-dB gain compression is 8.5 dBm. The IP3 and noise figure is 19.5 +/- 1 dBm and 1.8 +/- 0.2 dB, respectively, at frequencies between 24 and 32 GHz. The die size of the MMIC is 1.9 mm. This MMIC shows a potential reliable application in high-speed wireless access system

    Zero-field and Larmor spinor precessions in a neutron polarimeter experiment

    Full text link
    We present a neutron polarimetric experiment where two kinds of spinor precessions are observed: one is induced by different total energy of neutrons (zero-field precession) and the other is induced by a stationary guide field (Larmor precession). A characteristic of the former is the dependence of the energy-difference, which is in practice tuned by the frequency of the interacting oscillating magnetic field. In contrast the latter completely depends on the strength of the guide field, namely Larmor frequency. Our neutron-polarimetric experiment exhibits individual tuning as well as specific properties of each spinor precession, which assures the use of both spin precessions for multi-entangled spinor manipulation.Comment: 12 pages, 4 figure

    Superconductivity of Quasi-One-Dimensional Electrons in Strong Magnetic Field

    Full text link
    The superconductivity of quasi-one-dimensional electrons in the magnetic field is studied. The system is described as the one-dimensional electrons with no frustration due to the magnetic field. The interaction is assumed to be attractive between electrons in the nearest chains, which corresponds to the lines of nodes of the energy gap in the absence of the magnetic field. The effective interaction depends on the magnetic field and the transverse momentum. As the magnetic field becomes strong, the transition temperature of the spin-triplet superconductivity oscillates, while that of the spin-singlet increases monotonically.Comment: 15 pages, RevTeX, 3 PostScript figures in uuencoded compressed tar file are appende

    Noncyclic Pancharatnam phase for mixed state SU(2) evolution in neutron polarimetry

    Full text link
    We have measured the Pancharatnam relative phase for spin-1/2 states. In a neutron polarimetry experiment the minima and maxima of intensity modulations, giving the Pancharatnam phase, were determined. We have also considered general SU(2) evolution for mixed states. The results are in good agreement with theory.Comment: 5 pages, 4 figures, to be published in Phys.Lett.

    Mott Transition in the Two-Dimensional Flux Phase

    Full text link
    Effects of the electron-electron interaction in the two-dimensional flux phase are investigated. We treat the half-filled Hubbard model with a magnetic flux π\pi per plaquette by the quantum Monte Carlo method. When the interaction is small, an antiferromagnetic long-range does not exist and the charge fluctuation is different from that of the Mott insulator It suggests that the Mott transition occurs at finite strength of the interaction in the flux phase, which is in contrast to the standard Hubbard model.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    The Metal-Insulator Transition in the Doubly Degenerate Hubbard Model

    Full text link
    A systematic study has been made on the metal-insulator (MI) transition of the doubly degenerate Hubbard model (DHM) in the paramagnetic ground state, by using the slave-boson mean-field theory which is equivalent to the Gutzwiller approximation (GA). For the case of infinite electron-electron interactions, we obtain the analytic solution, which becomes exact in the limit of infinite spatial dimension. On the contrary, the finite-interaction case is investigated by numerical methods with the use of the simple-cubic model with the nearest-neighbor hopping. The mass-enhancement factor, ZZ, is shown to increase divergently as one approaches the integer fillings (N=1,2,3N = 1, 2, 3), at which the MI transition takes place, NN being the total number of electrons. The calculated NN dependence of ZZ is compared with the observed specific-heat coefficient, γ\gamma, of Sr1xLaxTiO3Sr_{1-x}La_xTiO_3 which is reported to significantly increase as xx approaches unity.Comment: Latex 16 pages, 10 ps figures included, published in J. Phys. Soc. Jpn. with some minor modifications. ([email protected]

    Violation of Bell-like Inequality for spin-energy entanglement in neutron polarimetry

    Full text link
    Violation of a Bell-like inequality for a spin-energy entangled neutron state has been confirmed in a polarimetric experiment. The proposed inequality, in Clauser-Horne-Shimony-Holt (CHSH) formalism, relies on correlations between the spin and energy degree of freedom in a single-neutron system. The entangled states are generated utilizing a suitable combination of two radio-frequency fields in a neutron polarimeter setup. The correlation function S is determined to be 2.333+/-0.005, which violates the Bell-like CHSH inequality by more than 66 standard deviations.Comment: 4 pages 2 figure

    Roles of proton-neutron interactions in alpha-like four-nucleon correlations

    Get PDF
    An extended pairing plus QQ force model, which has been shown to successfully explain the nuclear binding energy and related quantities such as the symmetry energy, is applied to study the alpha-like four-nucleon correlations in 1f_{7/2} shell nuclei. The double difference of binding energies, which displays a characteristic behavior at NZN \approx Z, is interpreted in terms of the alpha-like correlations. Important roles of proton-neutron interactions forming the alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.
    corecore