25,560 research outputs found
Electronic structure and the Fermi surface of UTGa_{5} (T=Fe, Co, Rh)
The relativistic energy-band calculations have been carried out for
UFeGa_{5}, UCoGa_{5} and URhGa_{5} under the assumption that 5f-electrons are
itinerant. A hybridization between the U 5f state and Ga 4p state occurs in the
vicinity of the Fermi level. The Fermi surface of UCoGa_{5} is quite similar to
that of URhGa_{5}, which are all small in size and closed in topology.
UFeGa_{5} has the quasi-two-dimensional Fermi surface which looks like a
lattice structure.Comment: 2 pages, 3 figures, LT23auth.cls, elsart.cls. submitted to conference
LT2
Fast Zonal Field Dynamo in Collisionless Kinetic Alfven Wave Turbulence
The possibility of fast dynamo action by collisionless kinetic Alfven Wave
turbulence is demonstrated. The irreversibility necessary to lock in the
generated field is provided by electron Landau damping, so the induced electric
field does not vanish with resistivity. Mechanisms for self-regulation of the
system and the relation of these results to the theory of alpha quenching are
discussed. The dynamo-generated fields have symmetry like to that of zonal
flows, and thus are termed zonal fields
Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings
By using a semi-analytical dynamical mean-field approximation previously
proposed by the author [H. Hasegawa, Phys. Rev. E, {\bf 70}, 066107 (2004)], we
have studied the synchronization of stochastic, small-world (SW) networks of
FitzHugh-Nagumo neurons with diffusive couplings. The difference and similarity
between results for {\it diffusive} and {\it sigmoid} couplings have been
discussed. It has been shown that with introducing the weak heterogeneity to
regular networks, the synchronization may be slightly increased for diffusive
couplings, while it is decreased for sigmoid couplings. This increase in the
synchronization for diffusive couplings is shown to be due to their local,
negative feedback contributions, but not due to the shorten average distance in
SW networks. Synchronization of SW networks depends not only on their structure
but also on the type of couplings.Comment: 17 pages, 8 figures, accepted in Phys. Rev. E with some change
Mechanism of Ambipolar Field-Effect Carrier Injections in One-Dimensional Mott Insulators
To clarify the mechanism of recently reported, ambipolar carrier injections
into quasi-one-dimensional Mott insulators on which field-effect transistors
are fabricated, we employ the one-dimensional Hubbard model attached to a
tight-binding model for source and drain electrodes. To take account of the
formation of Schottky barriers, we add scalar and vector potentials, which
satisfy the Poisson equation with boundary values depending on the drain
voltage, the gate bias, and the work-function difference. The current-voltage
characteristics are obtained by solving the time-dependent Schr\"odinger
equation in the unrestricted Hartree-Fock approximation. Its validity is
discussed with the help of the Lanczos method applied to small systems. We find
generally ambipolar carrier injections in Mott insulators even if the work
function of the crystal is quite different from that of the electrodes. They
result from balancing the correlation effect with the barrier effect. For the
gate-bias polarity with higher Schottky barriers, the correlation effect is
weakened accordingly, owing to collective transport in the one-dimensional
correlated electron systems.Comment: 21 pages, 10 figures, to appear in J. Phys. Soc. Jp
The pseudogap in Bi2212 single crystals from tunneling measurements: a possible evidence for the Cooper pairs above Tc
We present electron-tunneling spectroscopy of slightly overdoped Bi2212
single crystals with Tc = 87 - 90 K in a temperature range between 14 K and 290
K using a break-junction technique. The pseudogap which has been detected above
Tc appears at T* = 280 K. The analysis of the spectra shows that there is a
contribution to the pseudogap above Tc, which disappears approximately at 110 -
115 K. We associate this contribution with the presence of incoherent Cooper
pairs.Comment: 12 pages including 4 figures, to be published in Europhysics Letter
Ion Charge States in the Fast Solar Wind: New Data Analysis and Theoretical Refinements
We present a further investigation into the increased ionization observed in
element charge states in the fast solar wind compared to its coronal hole
source regions. Once ions begin to be perpendicularly heated by ion cyclotron
waves and execute large gyro-orbits, density gradients in the flow can excite
lower hybrid waves that then damp by heating electrons in the parallel
direction. We give further analysis of charge state data from polar coronal
holes at solar minimum and maximum, and also from equatorial coronal holes. We
also consider further the damping of lower hybrid waves by ions and the effect
of non-Maxwellian electron distribution functions on the degree of increased
ionization, both of which appear to be negligible for the solar wind case
considered here. We also suggest that the density gradients required to heat
electrons sufficiently to further ionize the solar wind can plausibly result
from the turbulent cascade of MHD waves.Comment: 27 pages, accepted by Ap
Classical small systems coupled to finite baths
We have studied the properties of a classical -body system coupled to a
bath containing -body harmonic oscillators, employing an model
which is different from most of the existing models with . We have
performed simulations for -oscillator systems, solving
first-order differential equations with and , in order to calculate the time-dependent energy exchange between the
system and the bath. The calculated energy in the system rapidly changes while
its envelope has a much slower time dependence. Detailed calculations of the
stationary energy distribution of the system (: an energy per
particle in the system) have shown that its properties are mainly determined by
but weakly depend on . The calculated is analyzed with the
use of the and - distributions: the latter is derived with
the superstatistical approach (SSA) and microcanonical approach (MCA) to the
nonextensive statistics, where stands for the entropic index. Based on
analyses of our simulation results, a critical comparison is made between the
SSA and MCA. Simulations have been performed also for the -body ideal-gas
system. The effect of the coupling between oscillators in the bath has been
examined by additional () models which include baths consisting of
coupled linear chains with periodic and fixed-end boundary conditions.Comment: 30 pages, 16 figures; the final version accepted in Phys. Rev.
- …