2 research outputs found

    Explaining holistic image regressors and classifiers in urban analytics with plausible counterfactuals

    Get PDF
    We propose a new form of plausible counterfactual explanation designed to explain the behaviour of computer vision systems used in urban analytics that make predictions based on properties across the entire image, rather than specific regions of it. We illustrate the merits of our approach by explaining computer vision models used to analyse street imagery, which are now widely used in GeoAI and urban analytics. Such explanations are important in urban analytics as researchers and practioners are increasingly reliant on it for decision making. Finally, we perform a user study that demonstrate our approach can be used by non-expert users, who might not be machine learning experts, to be more confident and to better understand the behaviour of image-based classifiers/regressors for street view analysis. Furthermore, the method can potentially be used as an engagement tool to visualise how public spaces can plausibly look like. The limited realism of the counterfactuals is a concern which we hope to improve in the future

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M⊙_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance
    corecore