399 research outputs found
Trauma Psycho Social Support Plus® and EMDR therapy for children and adolescents in a post-conflict setting: Mental health training in Kurdistan
Abstract: Being confronted with the alarming situation in countries like Iraq and Syria – areas shaped by war, of people having lost their homes and suffering from horrible experiences - TraumaAid has designed and conducted a training program, especially for health workers in refugee camps.
Clearly the intervention would have to adjust to specific circumstances; it would need a method adapted to another language and culture, an approach that could be used in a not-yet-secure situation with an undetermined number of sessions with every client.
Resilience is an important aspect enabling people who suffered from different traumata to resume an everyday life again. Resource installation is a basic technique in EMDR (Eye Movement Desensitization and Reprocessing) which intensifies an integral awareness of individual resources for the client. As easy as this method may seem, a careful priming for its actual use is required. A profound understanding of how a traumatic experience affects body, thoughts and emotions is needed as background knowledge. Moreover qualified skills concerning the interaction with children are needed to be able to establish a trustful relationship in the first place.
The following article describes a pilot project in Kurdistan / Northern Iraq - a training for psychologists, social workers and other mental health professionals working in different refugee camps. The aim was to provide the staff members with background knowledge of the dynamics of traumatization and teach them how to use resource installation in a responsible way to work with children, adolescents and their parents. 
Background CO₂ levels and error analysis from ground-based solar absorption IR measurements in central Mexico
In this investigation we analyze two common optical configurations to retrieve CO₂ total column amounts from solar absorption infrared spectra. The noise errors using either a KBr or a CaF₂ beam splitter, a main component of a Fourier transform infrared spectrometer (FTIR), are quantified in order to assess the relative precisions of the measurements. The configuration using a CaF₂ beam splitter, as deployed by the instruments which contribute to the Total Carbon Column Observing Network (TCCON), shows a slightly better precision. However, we show that the precisions in X ( = 0.2095 ⋅ ) retrieved from > 96 % of the spectra measured with a KBr beam splitter fall well below 0.2 %. A bias in X (KBr − CaF₂) of +0.56 ± 0.25 ppm was found when using an independent data set as reference. This value, which corresponds to +0.14 ± 0.064 %, is slightly larger than the mean precisions obtained. A 3-year X time series from FTIR measurements at the high-altitude site of Altzomoni in central Mexico presents clear annual and diurnal cycles, and a trend of +2.2 ppm yr⁻¹ could be determined
Methane and nitrous oxide from ground-based FTIR at Addis Ababa: Observations, error analysis, and comparison with satellite data
A ground-based, high-spectral-resolution Fourier transform infrared (FTIR) spectrometer has been operational in Addis Ababa, Ethiopia (9.01∘ N latitude, 38.76∘ E longitude; 2443 m altitude above sea level), since May 2009 to obtain information on column abundances and profiles of various constituents in the atmosphere. Vertical profile and column abundances of methane and nitrous oxide are derived from solar absorption measurements taken by FTIR for a period that covers May 2009 to March 2013 using the retrieval code PROFFIT (V9.5). A detailed error analysis of CH and NO retrieval are performed. Averaging kernels of the target gases shows that the major contribution to the retrieved information comes from the measurement. Thus, average degrees of freedom for signals are found to be 2.1 and 3.4, from the retrieval of CH and NO for the total observed FTIR spectra. Methane and nitrous oxide volume mixing ratio (VMR) profiles and column amounts retrieved from FTIR spectra are compared with data from the reduced spectral resolution Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía (IMK/IAA) MIPAS (Version V5R_CH4_224 and V5R_N2O_224), the Microwave Limb Sounder (MLS) (MLS v3.3 of NO and CH derived from MLS v3.3 products of CO, NO, and HO), and the Atmospheric Infrared Sounder (AIRS) sensors on board satellites. The averaged mean relative difference between FTIR methane and the three correlative instruments MIPAS, MLS, and AIRS are 4.2 %, 5.8 %, and 5.3 % in the altitude ranges of 20 to 27 km, respectively. However, the biases below 20 km are negative, which indicates the profile of CH4 from FTIR is less than the profiles derived from correlative instruments by −4.9 %, −1.8 %, and −2.8 %. The averaged positive bias between FTIR nitrous oxide and correlative instrument, MIPAS, in the altitude range of 20 to 27 km is 7.8 %, and a negative bias of −4 % at altitudes below 20 km. An averaged positive bias of 9.3 % in the altitude range of 17 to 27 km is obtained for FTIR N2O with MLS. In all the comparisons of CH from FTIR with data from MIPAS, MLS, and AIRS, sensors on board satellites indicate a negative bias below 20 km and a positive bias above 20 km. The mean error between partial-column amounts of methane from MIPAS and the ground-based FTIR is −5.5 %, with a standard deviation of 5 % that shows very good agreement as exhibited by relative differences between vertical profiles. Thus, the retrieved CH and NO VMR and column amounts from Addis Ababa, tropical site, is found to exhibit very good agreement with all coincident satellite observations. Therefore, the bias obtained from the comparison is comparable to the precision of FTIR measurement, which allows the use of data in further scientific studies as it represents a unique environment of tropical Africa, a region poorly investigated in the past
Analysis of total column CO₂ and CH₄ measurements in Berlin with WRF-GHG
Though they cover less than 3 % of the global land area, urban areas are responsible for over 70 % of the global greenhouse gas (GHG) emissions and contain 55 % of the global population. A quantitative tracking of GHG emissions in urban areas is therefore of great importance, with the aim of accurately assessing the amount of emissions and identifying the emission sources. The Weather Research and Forecasting model (WRF) coupled with GHG modules (WRF-GHG) developed for mesoscale atmospheric GHG transport can predict column-averaged abundances of CO2 and CH4 (XCO2 and XCH4). In this study, we use WRF-GHG to model the Berlin area at a high spatial resolution of 1 km. The simulated wind and concentration fields were compared with the measurements from a campaign performed around Berlin in 2014 (Hase et al., 2015). The measured and simulated wind fields mostly demonstrate good agreement. The simulated XCO2 shows quite similar trends with the measurement but with approximately 1 ppm bias, while a bias in the simulated XCH4 of around 2.7 % is found. The bias could potentially be the result of relatively high background concentrations, the errors at the tropopause height, etc. We find that an analysis using differential column methodology (DCM) works well for the XCH4 comparison, as corresponding background biases are then canceled out. From the tracer analysis, we find that the enhancement of XCH4 is highly dependent on human activities. The XCO2 enhancement in the vicinity of Berlin is dominated by anthropogenic behavior rather than biogenic activities. We conclude that DCM is an effective method for comparing models to observations independently of biases caused, e.g., by initial conditions. It allows us to use our high-resolution WRF-GHG model to detect and understand major sources of GHG emissions in urban areas
- …