9 research outputs found

    Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles

    No full text
    Zinc oxide (ZnO) nanoparticles were synthesized hydrothermally using zinc acetate dihydrate and sodium thiosulfate pentahydrate precursors. The synthesized powders were sintered in air at 600 °C for different durations with a Cl-doping concentration of 25 mg/g. The optimal sintering time was found to be 5 h, resulting in the successful formation of the ZnO phase with small particle sizes of around 90 nm, nominal atomic fractions of Zn and O (~50%, ~50%), and increased luminescence intensity. The ideal concentration of Cl was discovered to be 25 mg/g of ZnO, which resulted in the highest luminescence intensity. The ZnO luminescence characteristics were observed in emission bands peaking at approximately 503 nm attributed to the transition from oxygen vacancies. A considerable improvement in the emission intensity was observed with increased Cl doping concentration, up to eight orders of magnitude, compared to pristine ZnO nanoparticles. However, the luminescence intensity decreased in samples with higher concentrations of Cl doping due to concentration quenching. These preliminary outcomes suggest that Cl-doped ZnO nanoparticles could be used for radiation detector development for radon monitoring and other related applications

    Analysis of the Radiation Attenuation Parameters of Cu<sub>2</sub>HgI<sub>4</sub>, Ag<sub>2</sub>HgI<sub>4</sub>, and (Cu/Ag/Hg I) Semiconductor Compounds

    No full text
    This analysis aims to determine photon attenuation for five different ternary and binary iodide compounds using Phy-X/PSD software. For a broad range of photon energies between 0.015 and 15 MeV, the mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP) for the samples of Cu2HgI4, Ag2HgI4, CuI, AgI, and HgI were calculated. For illustration, the following values of TVL apply at 1 MeV: S1: 6.062 cm, S2: 6.209 cm, S3: 6.929 cm, S4: 6.897 cm, and S5: 4.568 cm. Some important parameters, such as total atomic cross-sections (ACS), electronic cross-sections (ECS), the effective atomic numbers (Zeff), effective electron density (Neff), and effective conductivity (Ceff) of the samples were also calculated. Additionally, exposure buildup factors (EBF) and energy-absorption buildup factor (EABF) were estimated. These data on the radiation characteristics of our samples could be useful for gamma attenuation. The HgI sample has the highest FNRCS values (0.0892) relative to the other tested samples showing good neutron attenuation features. The CuI sample shows low gamma attenuation features; in contrast, it shows high neutron attenuation features

    A zadirachta indica-assisted green synthesis of magnesium oxide nanoparticles for degradation of Reactive Red 195 dye: a sustainable environmental remedial approach

    No full text
    Abstract A variety of industries employ synthetic azo dyes. However, the biosphere is being damaged by the unused/leftover azo dyes, which pose a danger to all living things. Therefore, treating them to shield the environment from the potential harm of azo dyes is crucial. Bio-sorption is a cheap and effective mode for eliminating toxic dyes in the environment. The current work focused on synthesizing magnesium oxide (MgO) nanoparticles using an aqueous leaf extract of neem (Azadirachta indica). The XRD and SEM analyses of MgO nanoparticles indicated the crystalline nature of MgO nanoparticles with a cubic structure, and the size was around 90–100 nm. FTIR analysis showed the presence of a stretching frequency peak at 550 cm−1, confirming the Mg–O bond. The surface analysis revealed the cluster form of the synthesized nanoparticles. The UV–visible absorption peak for MgO nanoparticles was found at 294 nm and band gap of 4.52 eV. In order to eliminate the Reactive Red 195 dye, MgO nanoparticles were used. At pH 4, 40 °C, 0.02% dye concentration, and 0.003 g/L catalyst amount, the highest degree of decolorization (91%) was seen. Decreased total organic carbon (TOC) and the chemical oxygen demand (COD) percent were 84.33% and 81.3%, respectively. The proposed mechanism of target dye degradation was also investigated. MgO NPs were found to be effective in their catalytic behavior toward the degradation of Reactive Red 195 dye up to five cycles with almost no change in their catalytic activity

    Development of Sustainable Hydrophilic Azadirachta indica loaded PVA Nanomembranes for Cosmetic Facemask Applications

    No full text
    Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 &plusmn; 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24&deg; water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of &gt;70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/sec). AI-incorporated nanofiber membrane can effectively be used for facial mask application

    Development of Sustainable Hydrophilic <i>Azadirachta indica</i> Loaded PVA Nanomembranes for Cosmetic Facemask Applications

    No full text
    Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s). AI-incorporated nanofiber membrane can effectively be used for facial mask application

    Nano-Silica Bubbled Structure Based Durable and Flexible Superhydrophobic Electrospun Nanofibrous Membrane for Extensive Functional Applications

    No full text
    Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications

    Synergistic flame retardancy and electrical conductivity in di-glycidyl ether of bisphenol-A epoxy composites with polyaniline and aluminum Tri-hydroxide

    No full text
    This study focuses on developing and characterizing multifunctional composites based on the diglycidyl ether of bisphenol-A (DGEBA) epoxy matrix. The aim is to enhance fire resistance and electrical conductivity properties for applications in various fields. To achieve this, aluminum tri-hydroxide (ATH) was incorporated as a flame retardant (FR) agent, while polyaniline (PANI) was added to impart electrical conductivity. The composites were categorized into three groups: the first containing flame retardant (FR), the second containing PANI for conductivity, and the third containing both PANI and FR for combined effects. E 60-FP emerged as the optimal multifunctional composite, exhibiting superior mechanical properties among the tested formulations. Thermogravimetric analysis (TGA) results provided valuable insights into the thermal stability of E 60-FP, revealing that it retained 42% of its initial mass at a temperature of 600 °C. Additionally, the composite achieved a V-0 rating in the UL 94 test, confirming its excellent fire resistance. Notably, E 60-FP displayed impressive mechanical strength, with a tensile strength of 7.2 MPa and a tensile modulus of 1117.6 MPa. Its flexural strength and modulus were measured at 31.2 MPa and 2800.2 MPa, respectively. Furthermore, the composite E 60-FP exhibited remarkable electrical conductivity, measuring 6.1 × 10 ^–6 S cm ^−1 . These findings highlight the potential of DGEBA epoxy composites containing PANI and ATH as promising materials for applications requiring fire resistance and electrical conductivity properties

    Ipomoea carnea associated phytochemicals and their in silico investigation towards Meloidogyne incognita

    No full text
    Root-knot nematodes (Meloidogyne spp.) are sedentary endo-parasite that causes severe yield loss in carrot. Chemical nematicides currently used to manage Meloidogyne incognita are being phased out because of rising health and environmental issues. This study aimed to evaluate nematicidal effect of various concentrations, viz., 250, 500, 750, 1000ppm of leaf extract of Ipomoea carnea against M. incognita infecting carrot under in vitro and in pots assays. In our result, all tested concentrations displayed J2s mortality and egg hatching inhibition along with improving growth of carrot and reduced J2s population and root-knot index. Molecular docking performed predicts binding interactions of two major compounds, viz., neophytadiene and 2-amino-2-methyl-1-propanol as shown by GC-MS analysis with targeted protein, odorant response gene-1 of M. incognita, to confirm nematicidal action of I. carnea leaf extract. The obtained results also suggested that neophytadiene interacted more and strongly bound with odorant response gene-3 than 2-amino-2-methyl-1-propanol. The biochemical ligand-target protein interaction described in the present work will be helpful in the logical selection of biomolecules and essential proteins. Therefore, plant extract may be used the best alternative to chemical nematicides to control root-knot nematodes and caused longitudinal growth of the plant as well as reduce environmental risks
    corecore