1,764 research outputs found

    Theory of quasiparticle interference in mirror symmetric 2D systems and its application to surface states of topological crystalline insulators

    Full text link
    We study symmetry protected features in the quasiparticle interference (QPI) pattern of 2D systems with mirror symmetries and time-reversal symmetry, around a single static point impurity. We show that, in the Fourier transformed local density of states (FT-LDOS), \rho(\bq,\omega), while the position of high intensity peaks generically depends on the geometric features of the iso-energy contour at energy ω\omega, the \emph{absence} of certain peaks is guaranteed by the opposite mirror eigenvalues of the two Bloch states that are (i) on the mirror symmetric lines in the Brillouin zone (BZ) and (ii) separated by scattering vector \bq. We apply the general result to the QPI on the <001> <{001} >-surface of topological crystalline insulator Pb1−x_{1-x}Snx_xTe and predict all vanishing peaks in \rho(\bq,\omega). The model-independent analysis is supported by numerical calculations using an effective four-band model derived from symmetry analysis.Comment: Six-page text plus 2.5-page appendices, three figures and one table. Accepted versio

    Exotic Superconducting Properties in Topological Nodal Semimetal PbTaSe2_2

    Full text link
    We report the electronic properties of superconductivity in the topological nodal-line semimetal PbTaSe2_2. Angle-resolved photoemission measurements accompanied by band calculations confirmed the nodal-line band structure in the normal state of single crystalline PbTaSe2_2. Resistivity, magnetic-susceptibility and specific heat measurements have also been performed on high-quality single crystals. We observed upward features and large anisotropy in upper critical field (Hc2H_{c2}) measured in-plane (H//\textbf{ab}) and out-plane (H//\textbf{c}), respectively. Especially, Hc2H_{c2} measured in H//\textbf{ab} shows sudden upward features rather than a signal of saturation in ultralow temperatures. The specific heat measurements under magnetic field reveal a full superconducting gap with no gapless nodes. These behaviors in this clean noncentrosymmetric superconductor is possibly related to the underlying exotic physics, providing important clue for realization of topological superconductivity.Comment: 6 pages, 5 figures,1 table;Accepted for publication on PR

    Two distinct topological phases in the mixed valence compound YbB6 and its differences from SmB6

    Full text link
    We discuss the evolution of topological states and their orbital textures in the mixed valence compounds SmB6 and YbB6 within the framework of the generalized gradient approximation plus onsite Coulomb interaction (GGA+U) scheme for a wide range of values of U. In SmB6, the topological Kondo insulator (TKI) gap is found to be insensitive to the value of U, but in sharp contrast, Kondo physics in isostructural YbB6 displays a surprising sensitivity to U. In particular, as U is increased in YbB6, the correlated TKI state in the weak-coupling regime transforms into a d-p-type topological insulator phase with a band inversion between Yb-5d and B-2p orbitals in the intermediate coupling range, without closing the insulating energy gap throughout this process. Our theoretical predictions related to the TKI and non-TKI phases in SmB6 and YbB6 are in substantial accord with recent angle-resolved photoemission spectroscopy (ARPES) experiments.Comment: 6 pages, 4 figures URL: http://link.aps.org/doi/10.1103/PhysRevB.91.15515
    • …
    corecore