71 research outputs found
High INtensity Interval Training In pATiEnts with intermittent claudication (INITIATE): protocol for a multicentre, proof-of-concept, prospective interventional study
INTRODUCTION: The first-line recommended treatment for patients with intermittent claudication (IC) is a supervised exercise programme (SEP), which includes a minimum of 2-hours of exercise per week over a 12-week period. However, provision, uptake and adherence rates for these SEP programmes are poor, with time constraints cited as a common participant barrier. High-intensity interval training (HIIT) is more time-efficient and therefore has the potential to overcome this barrier. However, evidence is lacking for the role of HIIT in those with IC. This proof-of-concept study aims to consider the safety, feasibility, tolerability and acceptability of a HIIT programme for patients with IC. METHODS AND ANALYSIS: This multicentre, single-group, prospective, interventional feasibility study will recruit 40 patients with IC, who will complete 6 weeks of HIIT, 3 times a week. HIIT will involve a supervised programme of 10×1 min high-intensity cycling intervals at 85%-90% peak power output (PPO), interspaced with 10×1 min low intensity intervals at 20%-25% PPO. PPO will be determined from a baseline cardiopulmonary exercise test (CPET) and it is intended that patients will achieve ≥85% of maximum heart rate from CPET, by the end of the second HIIT interval. Primary outcome measures are safety (occurrence of adverse events directly related to the study), programme feasibility (including participant eligibility, recruitment and completion rates) and HIIT tolerability (ability to achieve and maintain the required intensity). Secondary outcomes include patient acceptability, walking distance, CPET cardiorespiratory fitness measures and quality of life outcomes. ETHICS AND DISSEMINATION: Ethical approval was obtained via a local National Health Service research ethics committee (Bradford Leeds - 18/YH/0112) and recruitment began in August 2019 and will be completed in October 2020. Results will be published in peer-reviewed journals and presented at international conferences and are expected to inform a future pilot randomised controlled trial of HIIT versus usual-care SEPs. TRIAL REGISTRATION NUMBER: NCT04042311; Pre-results
Detection of paralytic shellfish toxins in mussels and oysters using the qualitative neogen lateral-flow immunoassay: an interlaboratory study
Paralytic shellfish toxins (PSTs) in bivalve molluscs represent a public health risk and are controlled via compliance with a regulatory limit of 0.8 mg saxitoxin (STX)center dot 2HCl equivalents per kilogram of shellfish meat (eq/kg). Shellfish industries would benefit from the use of rapid immunological screening tests for PSTs to be used for regulation, but to date none have been fully validated. An interlaboratory study involving 16 laboratories was performed to determine the suitability of the Neogen test to detect PSTs in mussels and oysters. Participants performed the standard protocol recommended by the manufacturer and a modified protocol with a conversion step to improve detection of gonyautoxin 1&4. The statistical analysis showed that the protocols had good homogeneity across all laboratories, with satisfactory repeatability, laboratory, and reproducibility variation near the regulatory level. The mean probability of detection (POD) at 0.8 mg STX center dot 2HCl eq/kg using the standard protocol in mussels and oysters was 0.966 and 0.997, respectively, and 0.968 and 0.966 using the modified protocol. The estimated LOD in mussels was 0.316 mg STX center dot 2HCl eq/kg with the standard and 0.682 mg STX center dot 2HCl eq/kg with the modified protocol, and 0.710 and 0.734 mg STX center dot 2HCl eq/kg for oysters, respectively. The Neogen test may be acceptable for regulatory purposes for oysters in accordance with European Commission directives in which the standard protocol provides, at the regulatory level, a probability of a negative response of 0.033 on 95% of occasions. Its use for mussels is less consistent at the regulatory level due to the wide prediction interval around the POD
- …