884 research outputs found
Beyond the Frenkel-Kac-Segal construction of affine Lie algebras
This contribution reviews recent progress in constructing affine Lie algebras
at arbitrary level in terms of vertex operators. The string model describes a
completely compactified subcritical chiral bosonic string whose momentum
lattice is taken to be the (Lorentzian) affine weight lattice. The main feature
of the new realization is the replacement of the ordinary string oscillators by
physical DDF operators, whereas the unphysical position operators are
substituted by certain linear combinations of the Lorentz generators. As a side
result we obtain simple expressions for the affine Weyl translations as Lorentz
boosts. Various applications of the construction are discussed.Comment: 6 pages, LaTeX209 with twoside, fleqn, amsmath, amsfonts, amssymb,
amsthm style files; contribution to Proceedings of the 30th Int. Symposium
Ahrenshoop on the Theory of Elementary Particles, Buckow, Germany, August
27-31, 199
Structural Routability of n-Pairs Information Networks
Information does not generally behave like a conservative fluid flow in
communication networks with multiple sources and sinks. However, it is often
conceptually and practically useful to be able to associate separate data
streams with each source-sink pair, with only routing and no coding performed
at the network nodes. This raises the question of whether there is a nontrivial
class of network topologies for which achievability is always equivalent to
routability, for any combination of source signals and positive channel
capacities. This chapter considers possibly cyclic, directed, errorless
networks with n source-sink pairs and mutually independent source signals. The
concept of downward dominance is introduced and it is shown that, if the
network topology is downward dominated, then the achievability of a given
combination of source signals and channel capacities implies the existence of a
feasible multicommodity flow.Comment: The final publication is available at link.springer.com
http://link.springer.com/chapter/10.1007/978-3-319-02150-8_
Deltaron Dibaryon Structure in Chiral SU(3) Quark Model
We discuss the structure of Deltaron dibaryon in the chiral SU(3) quark
model. The energy of Deltaron is obtained by considering the coupling of the
and (hidden color) channels. The effects of various
parameters on the Deltaron mass are also studied. It is shown that the mass of
Deltaron is lower than the mass of but higher than the mass of
.Comment: 15 pages, Late
Neoclassical tearing modes in DIII-D and calculations of the stabilizing effects of localized electron cyclotron current drive
Neoclassical tearing modes are found to limit the achievable beta in many high performance discharges in DIII-D. Electron cyclotron current drive within the magnetic islands formed as the tearing mode grows has been proposed as a means of stabilizing these modes or reducing their amplitude, thereby increasing the beta limit by a factor around 1.5. Some experimental success has been obtained previously on Asdex-U. Here the authors examine the parameter range in DIII-C in which this effect can best be studied
Recommended from our members
Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment
The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s
A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER
The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios
- …