12,658 research outputs found
Beyond the random phase approximation: Stimulated Brillouin backscatter for finite laser coherence times
We develop a statistical theory of stimulated Brillouin backscatter (BSBS) of
a spatially and temporally partially incoherent laser beam for laser fusion
relevant plasma. We find a new collective regime of BSBS (CBSBS) with intensity
threshold controlled by diffraction, an insensitive function of the laser
coherence time, , once light travel time during exceeds a laser
speckle length. The BSBS spatial gain rate is approximately the sum of that due
to CBSBS, and a part which is independent of diffraction and varies linearly
with . We find that the bandwidth of KrF-laser-based fusion systems would
be large enough to allow additional suppression of BSBS.Comment: 8 pages, 5 figures. arXiv admin note: substantial text overlap with
arXiv:1105.209
Management Intensive Grazing of Stockers at the Andrew Jackson Demonstration Farm (1996 – 1998)
The Andrew Jackson Demonstration Farm (AJDF) is located in central Jackson County in east central Iowa. A board of directors operates the farm for the purpose of demonstrating different production practices and management strategies. From 1996 to 1998 management intensive grazing practices and the grazing of stockers on a combination of permanent and tillable pasture have been demonstrated. Grazing strategies or practices demonstrated during these years included establishment of Eastern Gamagrass and Big Bluestem, variable density grazing, measuring forage on-offer, estimating dry matter intake, grazing corn, pasture renovation, and fencing and water systems. Production performance data were gathered for the three years stockers that were grazed. During this time the stockers averaged 121 animal days of grazing, a 1.1 head per acre stocking rate, a 1.85 pound average daily gain, and 228 pounds of gain per acre. The financial measures evaluated the value of gain on pasture and the pasture cost of the gain. The value of gain per pound was positive for 1996 and 1997 at .52 whereas in 1998 it was a -.12 to $.16. Production performance is only one part of the profit picture when evaluating a stocker operation. Buysell margins are the other significant part that can greatly impact the profit potential of a summer grazing program
Intensive Rotational Grazing of Steers at the Andrew Jackson Demonstration Farm
Fifty head of crossbred steers started grazing 51 acres of pasture on May 1 in a rotational grazing system using a variable density paddock system. Twenty-two head grazed 92 days, 27 grazed 140 days, and one steer died. A total of 11,922 pounds was produced on 5,804 animal-days of grazing. The average daily gain was 2.02 pounds for group 1 and 2.07 for group 2. The stocking rate for the first 92 days was .98 steers per acre and .53 for the final 48 days. The animal days of grazing per acre was 113 and the pounds of gain per acre was 233. Total return for land, labor and management for the demonstration was 55.49/acre
The Self-Dual String and Anomalies in the M5-brane
We study the anomalies of a charge self-dual string solution in the
Coulomb branch of M5-branes. Cancellation of these anomalies allows us to
determine the anomaly of the zero-modes on the self-dual string and their
scaling with and . The dimensional reduction of the five-brane
anomalous couplings then lead to certain anomalous couplings for D-branes.Comment: 13 pages, Harvmac, refs adde
Electrometry Using Coherent Exchange Oscillations in a Singlet-Triplet-Qubit
Two level systems that can be reliably controlled and measured hold promise
in both metrology and as qubits for quantum information science (QIS). When
prepared in a superposition of two states and allowed to evolve freely, the
state of the system precesses with a frequency proportional to the splitting
between the states. In QIS,this precession forms the basis for universal
control of the qubit,and in metrology the frequency of the precession provides
a sensitive measurement of the splitting. However, on a timescale of the
coherence time, , the qubit loses its quantum information due to
interactions with its noisy environment, causing qubit oscillations to decay
and setting a limit on the fidelity of quantum control and the precision of
qubit-based measurements. Understanding how the qubit couples to its
environment and the dynamics of the noise in the environment are therefore key
to effective QIS experiments and metrology. Here we show measurements of the
level splitting and dephasing due to voltage noise of a GaAs singlet-triplet
qubit during exchange oscillations. Using free evolution and Hahn echo
experiments we probe the low frequency and high frequency environmental
fluctuations, respectively. The measured fluctuations at high frequencies are
small, allowing the qubit to be used as a charge sensor with a sensitivity of
, two orders of magnitude better than
the quantum limit for an RF single electron transistor (RF-SET). We find that
the dephasing is due to non-Markovian voltage fluctuations in both regimes and
exhibits an unexpected temperature dependence. Based on these measurements we
provide recommendations for improving in future experiments, allowing for
higher fidelity operations and improved charge sensitivity
Transmogrifying Fuzzy Vortices
We show that the construction of vortex solitons of the noncommutative
Abelian-Higgs model can be extended to a critically coupled gauged linear sigma
model with Fayet-Illiopolous D-terms. Like its commutative counterpart, this
fuzzy linear sigma model has a rich spectrum of BPS solutions. We offer an
explicit construction of the degree static semilocal vortex and study in
some detail the infinite coupling limit in which it descends to a degree
\C\Pk^{N} instanton. This relation between the fuzzy vortex and
noncommutative lump is used to suggest an interpretation of the noncommutative
sigma model soliton as tilted D-strings stretched between an NS5-brane and a
stack of D3-branes in type IIB superstring theory.Comment: 21 pages, 4 figures, LaTeX(JHEP3
Path-integral calculation of the third virial coefficient of quantum gases at low temperatures
We derive path-integral expressions for the second and third virial
coefficients of monatomic quantum gases. Unlike previous work that considered
only Boltzmann statistics, we include exchange effects (Bose-Einstein or
Fermi-Dirac statistics). We use state-of-the-art pair and three-body potentials
to calculate the third virial coefficient of 3He and 4He in the temperature
range 2.6-24.5561 K. We obtain uncertainties smaller than those of the limited
experimental data. Inclusion of exchange effects is necessary to obtain
accurate results below about 7 K.Comment: The following article has been accepted by The Journal of Chemical
Physics. After it is published, it will be found at http://jcp.aip.org/
Version 2 includes the corrections detailed in the Erratu
- …