506 research outputs found
Recommended from our members
Evaluation of boundary-layer type in a weather forecast model utilising long-term Doppler lidar observations
Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundary-layers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures
Fire interval and post-fire climate effects on serotinous forest resilience
Background
Climate change is eroding forest resilience to disturbance directly through warming climate and indirectly through increasing disturbance activity. Forests characterized by stand-replacing fire regimes and dominated by serotinous species are at risk when the inter-fire period is insufficient for canopy seed bank development and climate conditions for recruitment in the post-fire growing season are unsuitable. Although both factors are critical to serotinous forest persistence, their relative importance for post-fire regeneration in serotinous forests remains poorly understood. To assess the relative effects of each factor, we established plots in severely burned knobcone pine (Pinus attenuata Lemmon) forests in Oregon and California, USA, representing a range of past fire intervals (6 to 31+ years). Specifically, we evaluated effects of fire interval and pre-fire canopy seed bank (proxies for seed supply) and post-fire climate on three metrics of post-fire tree regeneration (seedling density, probability of self-replacement, percent population recovery).
Results
Seed supply consistently had the strongest effect on post-fire regeneration. Between 6- and 31-year fire intervals, post-fire seedling density increased from 1000 to 100,000 seedlings ha−1, while probability of self-replacement increased from ~ 0 to ~ 100% and percent population recovery increased from 20 to 2000% of the pre-fire population, respectively. Similarly, increasing the canopy seed bank by two orders of magnitude increased seedling density and percent population recovery by two orders and one order of magnitude, respectively, and increased the probability of self-replacement by > 50%. Greater post-fire climatic moisture deficit exacerbated the effect of seed supply; an additional 4–6 years between fires was required under high moisture stress conditions to reach similar regeneration levels as under low moisture stress conditions.
Conclusion
The overriding effect of seed supply—strongly driven by pre-fire stand age—on post-fire regeneration suggests that altered fire frequency (an indirect effect of climate change) will have a profound impact on serotinous forests. Although direct effects of hot and dry climate are lower in magnitude, they can alter forest recovery where seed supply nears a threshold. These findings reveal how fire interval and climate combine to determine changes in forest cover in the future, informing management and vulnerability mapping
Challenging lanthanide relaxation theory: erbium and thulium complexes that show NMR relaxation rates faster than dysprosium and terbium analogues
Measurements of the proton NMR paramagnetic relaxation rates for several series of isostructural lanthanide(III) complexes have been performed in aqueous solution over the field range 1.0 to 16.5 Tesla. The field dependence has been modeled using Bloch–Redfield–Wangsness theory, allowing values for the electronic relaxation time, Tle and the magnetic susceptibility, μeff, to be estimated. Anomalous relaxation rate profiles were obtained, notably for erbium and thulium complexes of low symmetry 8-coordinate aza-phosphinate complexes. Such behaviour challenges accepted theory and can be interpreted in terms of changes in Tle values that are a function of the transient ligand field induced by solvent collision and vary considerably between Ln3+ ions, along with magnetic susceptibilities that deviate significantly from free-ion values
Asymptotically cylindrical 7-manifolds of holonomy G_2 with applications to compact irreducible G_2-manifolds
We construct examples of exponentially asymptotically cylindrical Riemannian
7-manifolds with holonomy group equal to G_2. To our knowledge, these are the
first such examples. We also obtain exponentially asymptotically cylindrical
coassociative calibrated submanifolds. Finally, we apply our results to show
that one of the compact G_2-manifolds constructed by Joyce by desingularisation
of a flat orbifold T^7/\Gamma can be deformed to one of the compact
G_2-manifolds obtainable as a generalized connected sum of two exponentially
asymptotically cylindrical SU(3)-manifolds via the method given by the first
author (math.DG/0012189).Comment: 36 pages; v2: corrected trivial typos; v3: some arguments corrected
and improved; v4: a number of improvements on presentation, paritularly in
sections 4 and 6, including an added picture
The nature of transition circumstellar disks. I. The ophiuchus molecular cloud
We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d ∼ 125pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from JUP and accretion rates ranging from JUP) and negligible accretion (<10-11 M ⊙yr-1), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10-3 and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.Facultad de Ciencias Astronómicas y GeofÃsica
The Extracellular Vesicle Citrullinome and Signature in a Piglet Model of Neonatal Seizures
Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the pep-tidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma-and CSF-EVs to monitor responses to treatment
Environment and Rural Affairs Monitoring & Modelling Programme - ERAMMP Report-78: Interim Report on the Development of Indicator 44 (Status of Biological Diversity in Wales)
i. We report interim progress on work to develop a new indicator of the status of biological diversity for Wales: indicator 44 for the Well-being of Future Generations (Wales) Act (2015). The focus of this work is on combining data into a single indicator of change in the distribution of section 7 species over time.
ii. Ongoing work has sought to quantify the additional contribution that could be made by Welsh LERC records. In doing so new tools have been developed to interrogate the LERC data and to identify extra records (combinations of date, species and 1km grid square) over and above those in existing national surveillance scheme datasets for Wales.
iii. The scale and complexity of this task has been such that we cannot currently report the size of the LERC contribution. This is also in part because criteria for selecting additional data are likely to need discussion and agreement with our project partners.
iv. By the end of the project we plan to have produced new updated annual trends for section 7 species that include national scheme and LERC data where possible.
v. In parallel, a new and updated section 7 species indicator for Wales has been produced based on updated national scheme datasets. This combines annual estimates of change in the proportion of occupied sites in 1x1km squares in Wales for 113 species.
vi. In the long-term period (1970-2016), the index of distribution change for section 7 priority species in Wales had declined to 87% of its baseline value in 1970. This is considered a statistically significant decrease and the indicator is therefore assessed as decreasing. Over this long-term period, 16% of species showed a strong or weak increase and 34% showed a strong or weak decline.
vii. Over the short-term period (2011-2016), the value of the indicator increased from 85 to 87 and was assessed as stable. Between 2011 and 2016, 35% of species showed a strong or weak increase and 19% showed a strong or weak decline.
viii. New results for an experimental ‘all-species’ indicator are also presented.
ix. Evidence for changes in abundance of section 7 species are reviewed and the merits of developing a new abundance-based indicator for Wales are highlighted as part of a further program of work.
x. Finally, we review evidence and data supporting trends for section 7 marine species finding that information is lacking but, based on the outcomes of recent work for Scotland, we highlight additional sources of data that are worth exploring as a basis for trends modelling. Given the wide variety of potentially contributing schemes and ongoing activities we believe a separate expert workshop on marine biodiversity surveillance in Wales would be an efficient way forwards
Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids
Recently it has been experimentally demonstrated that certain glasses display
an unexpected magnetic field dependence of the dielectric constant. In
particular, the echo technique experiments have shown that the echo amplitude
depends on the magnetic field. The analysis of these experiments results in the
conclusion that the effect seems to be related to the nuclear degrees of
freedom of tunneling systems. The interactions of a nuclear quadrupole
electrical moment with the crystal field and of a nuclear magnetic moment with
magnetic field transform the two-level tunneling systems inherent in amorphous
dielectrics into many-level tunneling systems. The fact that these features
show up at temperatures , where the properties of amorphous materials
are governed by the long-range interaction between tunneling systems,
suggests that this interaction is responsible for the magnetic field dependent
relaxation. We have developed a theory of many-body relaxation in an ensemble
of interacting many-level tunneling systems and show that the relaxation rate
is controlled by the magnetic field. The results obtained correlate with the
available experimental data. Our approach strongly supports the idea that the
nuclear quadrupole interaction is just the key for understanding the unusual
behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure
D6-branes and torsion
The D6-brane spectrum of type IIA vacua based on twisted tori and RR
background fluxes is analyzed. In particular, we compute the torsion factors of
the (co)homology groups H_n and describe the effect that they have on D6-brane
physics. For instance, the fact that H_3 contains Z_N subgroups explains why RR
tadpole conditions are affected by geometric fluxes. In addition, the presence
of torsional (co)homology shows why some D6-brane moduli are lifted, and it
suggests how the D-brane discretum appears in type IIA flux compactifications.
Finally, we give a clear, geometrical understanding of the Freed-Witten anomaly
in the present type IIA setup, and discuss its consequences for the
construction of semi-realistic flux vacua.Comment: 35 pages, 1 figure. One reference adde
The luminosities of protostars in the spitzer c2d and gould belt legacy clouds
Journal ArticlePublished version available online at the Astronomical Journal, Volume 145, Number 4, Article 94; doi: doi: 10.1088/0004-6256/145/4/94Motivated by the long-standing "luminosity problem" in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L bol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L ȯ to 69 L ȯ, and has a mean and median of 4.3 L ȯ and 1.3 L ȯ, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L bol ≲ 0.5 L) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 μm <λ < 850 μm) and have L bol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work. © 2013. The American Astronomical Society. All rights reserved..National Science FoundationNational Aeronautics and Space AdministrationJet Propulsion Laboratory, California Institute of Technolog
- …