2,432 research outputs found

    Establishment of self-sustaining populations of non-native fish species in the River Trent and Warwickshire Avon, UK, indicated by the presence of 0+ fish

    Get PDF
    This study investigated the reproduction of non-native fish species, inferred from the presence of 0+ fish, in three English lowland rivers over an 8 year period. Evidence of self-sustaining populations was found for three non-native fish species, namely zander Sander lucioperca (in the River Trent and Warwickshire Avon), bitterling Rhodeus amarus (in the Trent) and carp Cyprinus carpio (in the Trent and Avon). Notwithstanding, such fishes are currently rare, accounting for < 1% of the 0+ fish communities of these two rivers, and no non-native species were recorded from the Yorkshire Ouse. It is possible, however, that improvements in water quality and habitat, together with the potential effects of climate change, may facilitate consolidation and expansion of their populations, as well as those of other non-native fish species already present or introduced in the future. This could have repercussions for the ecology and management of non-native fishes in the UK. © 2007 The Author(s)

    Overcoming the critical slowing down of flat-histogram Monte Carlo simulations: Cluster updates and optimized broad-histogram ensembles

    Get PDF
    We study the performance of Monte Carlo simulations that sample a broad histogram in energy by determining the mean first-passage time to span the entire energy space of d-dimensional ferromagnetic Ising/Potts models. We first show that flat-histogram Monte Carlo methods with single-spin flip updates such as the Wang-Landau algorithm or the multicanonical method perform sub-optimally in comparison to an unbiased Markovian random walk in energy space. For the d=1,2,3 Ising model, the mean first-passage time \tau scales with the number of spins N=L^d as \tau \propto N^2L^z. The critical exponent z is found to decrease as the dimensionality d is increased. In the mean-field limit of infinite dimensions we find that z vanishes up to logarithmic corrections. We then demonstrate how the slowdown characterized by z>0 for finite d can be overcome by two complementary approaches - cluster dynamics in connection with Wang-Landau sampling and the recently developed ensemble optimization technique. Both approaches are found to improve the random walk in energy space so that \tau \propto N^2 up to logarithmic corrections for the d=1 and d=2 Ising model

    Nature Of Transition Circumstellar Disks. I. The Ophiuchus Molecular Cloud

    Get PDF
    We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d similar to 125 pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40 M(JUP) and accretion rates ranging from <10(-11) to 10(-7) M(circle dot) yr(-1), but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5 M(JUP)) and negligible accretion (<10(-11) M(circle dot) yr(-1)), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10(-3) and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.NASA 1224608, 1230782, 1230779, 1407FONDECYT 1061199Basal CATA PFB 06/09ALMA FUND 31070021ALMA-Conicyt FUND 31060010National Science Foundation AST0-808144Spitzer Space Telescope Legacy Science ProgramAstronom

    On the stability and spectrum of non-supersymmetric AdS(5) solutions of M-theory compactified on Kahler-Einstein spaces

    Full text link
    Eleven-dimensional supergravity admits non-supersymmetric solutions of the form AdS(5)xM(6) where M(6) is a positive Kahler-Einstein space. We show that the necessary and sufficient condition for such solutions to be stable against linearized bosonic supergravity perturbations can be expressed as a condition on the spectrum of the Laplacian acting on (1,1)-forms on M(6). For M(6)=CP(3), this condition is satisfied, although there are scalars saturating the Breitenlohner-Freedman bound. If M(6) is a product S(2)xM(4) (where M(4) is Kahler-Einstein) then there is an instability if M(4) has a continuous isometry. We show that a potential non-perturbative instability due to 5-brane nucleation does not occur. The bosonic Kaluza-Klein spectrum is determined in terms of eigenvalues of operators on M(6).Comment: 21 pages. v2: Includes SU(4) quantum numbers for CP3 case, typos fixed, refs adde

    Insecure attachment is associated with the α-EEG anomaly during sleep

    Get PDF
    Abstract Background The α-EEG anomaly during sleep, originally associated with chronic pain, is noted in several psychiatric and medical conditions and is also present in some normal subjects. The exact significance of the α-EEG anomaly is uncertain, but it has been suggested to be a nonspecific response to a variety of noxious stimuli. We propose that attachment insecurity, which is often associated with a state of hypervigilance during wakefulness, may be associated with the α-EEG anomaly during sleep. Methods Thirty one consecutive patients referred to a Sleep Disorders Clinic for clinical assessment of sleep complaints underwent standard polysomnographic recording. The degree of alpha activity in polysomnographs was scored visually according to standard criteria. Attachment insecurity was measured with the Experience in Close Relationships – Revised questionnaire. Results Attachment anxiety was significantly associated with the proportion of sleep in which α waves were present (df = 1, F = 5.01, p = 0.03). The relationship between the α-EEG anomaly and attachment anxiety was not explained by the distribution of sleep and mood diagnoses, medications, anxiety symptoms or depression symptoms. Conclusion Interpersonal style in close relationships may be related to sleep physiology. Further research to determine the nature of the relationship between attachment, sleep and other factors that are related to each of these, such as a history of personal adversity, is warranted

    Limits on Radio Continuum Emission from a Sample of Candidate Contracting Starless Cores

    Get PDF
    We used the NRAO Very Large Array to search for 3.6 cm continuum emission from embedded protostars in a sample of 8 nearby ``starless'' cores that show spectroscopic evidence for infalling motions in molecular emission lines. We detect a total of 13 compact sources in the eight observed fields to 5 sigma limiting flux levels of typically 0.09 mJy. None of these sources lie within 1' of the central positions of the cores, and they are all likely background objects. Based on an extrapolation of the empirical correlation between the bolometric luminosity and 3.6 cm luminosity for the youngest protostars, these null-detections place upper limits of ~0.1 L_sun (d/140pc)^2 on the luminosities of protostellar sources embedded within these cores. These limits, together with the extended nature of the inward motions inferred from molecular line mapping (Lee et al. 2001), are inconsistent with the inside-out collapse model of singular isothermal spheres and suggest a less centrally condensed phase of core evolution during the earliest stages of star formation.Comment: Accepted to the Astronomical Journal; 12 pages, 1 figur

    Detecting Population III stars through observations of near-IR cosmic infrared background anisotropies

    Full text link
    Following the successful mapping of the last scattering surface by WMAP and balloon experiments, the epoch of the first stars, when Population III stars formed, is emerging as the next cosmological frontier. It is not clear what these stars' properties were, when they formed or how long their era lasted before leading to the stars and galaxies we see today. We show that these questions can be answered with the current and future measurements of the near-IR cosmic infrared background (CIB). Theoretical arguments suggest that Population III stars were very massive and short-lived stars that formed at z∌10−20z\sim 10-20 at rare peaks of the density field in the cold-dark-matter Universe. Because Population III stars probably formed individually in small mini-halos, they are not directly accessible to current telescopic studies. We show that these stars left a strong and measurable signature via their contribution to the CIB anisotropies for a wide range of their formation scenarios. The excess in the recently measured near-IR CIB anisotropies over that from normal galaxies can be explained by contribution from early Population III stars. These results imply that Population III were indeed very massive stars and their epoch started at z∌20z\sim 20 and lasted past z\lsim 13. We show the importance of accurately measuring the CIB anisotropies produced by Population III with future space-based missions.Comment: Ap.J., in press. (Replaced with accepted version

    Network approaches for formalizing conceptual models in ecosystem-based management

    Get PDF
    Funding Intermodel comparisons were supported through funding from the NOAA Integrated Ecosystem Assessment Program. P.S. McDonald’s involvement was funded in part by a grant from Washington Sea Grant, University of Washington, pursuant to National Oceanic and Atmospheric Administration Award number NA14OAR4170078. Funding for RPW was supported by the National Marine Fisheries Service (NMFS)/Sea Grant Population and Ecosystem Dynamics Graduate Fellowship via federal award NA14OAR4170077. Acknowledgements We would like to acknowledge and thank the participants of the NOAA Integrated Ecosystem Assessment Program conceptual network modelling workshop at Baton Rouge, LA in July 2018. The discussions at this meeting formed some of the basis for the ideas presented in this manuscript. We also thank J. Moss and two anonymous reviewers for valuable comments on earlier manuscript drafts. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service, NOAA. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This is NOAA Integrated Ecosystem Assessment Program contribution number 2021_3.Peer reviewedPostprin

    Toward Autism-Friendly Magnetic Resonance Imaging: Exploring Autistic Individuals' Experiences of Magnetic Resonance Imaging Scans in the United Kingdom, a Cross-Sectional Survey

    Get PDF
    BACKGROUND: Autistic individuals might undergo a magnetic resonance imaging (MRI) examination for clinical concerns or research. Increased sensory stimulation, lack of appropriate environmental adjustments, or lack of streamlined communication in the MRI suite may pose challenges to autistic patients and render MRI scans inaccessible. This study aimed at (i) exploring the MRI scan experiences of autistic adults in the United Kingdom; (ii) identifying barriers and enablers toward successful and safe MRI examinations; (iii) assessing autistic individuals' satisfaction with MRI service; and (iv) informing future recommendations for practice improvement. METHODS: We distributed an online survey to the autistic community on social media, using snowball sampling. Inclusion criteria were: being older than 16, have an autism diagnosis or self-diagnosis, self-reported capacity to consent, and having had an MRI scan in the United Kingdom. We used descriptive statistics for demographics, inferential statistics for group comparisons/correlations, and content analysis for qualitative data. RESULTS: We received 112 responses. A total of 29.6% of the respondents reported not being sent any information before the scan. Most participants (68%) confirmed that radiographers provided detailed information on the day of the examination, but only 17.1% reported that radiographers offered some reasonable environmental adjustments. Only 23.2% of them confirmed they disclosed their autistic identity when booking MRI scanning. We found that quality of communication, physical environment, patient emotions, staff training, and confounding societal factors impacted their MRI experiences. Autistic individuals rated their overall MRI experience as neutral and reported high levels of claustrophobia (44.8%). CONCLUSION: This study highlighted a lack of effective communication and coordination of care, either between health care services or between patients and radiographers, and lack of reasonable adjustments as vital for more accessible and person-centered MRI scanning for autistic individuals. Enablers of successful scans included effective communication, adjusted MRI environment, scans tailored to individuals' needs/preferences, and well-trained staff
    • 

    corecore