667 research outputs found

    Broadband Study of Gamma-Ray Blazars at Redshifts z=2.02.5z=2.0-2.5

    Full text link
    High redshift blazars are among the most powerful non-explosive sources in the Universe and play a crucial role in understanding the evolution of relativistic jets. To understand these bright objects, we performed a detailed investigation of the multiwavelength properties of 79 γ\gamma-ray blazars with redshifts ranging from z = 2.0 to 2.5, using data from Fermi LAT, Swift XRT/UVOT, and NuSTAR observations. In the γ\gamma-ray band, the spectral analysis revealed a wide range of flux and photon indices, from 5.32×10105.32 \times 10^{-10} to 3.40×1073.40 \times 10^{-7} photons cm2^{-2} s1^{-1} and from 1.66 to 3.15, respectively, highlighting the diverse nature of these sources. The detailed temporal analysis showed that flaring activities were observed in 31 sources. Sources such as 4C+71.07, PKS 1329-049, and 4C+01.02, demonstrated significant increase in the γ\gamma-ray luminosity and flux variations, reaching peak luminosity exceeding 105010^{50} erg s1^{-1}. The temporal analysis extended to X-ray and optical/UV bands, showed clear flux changes in some sources in different observations. The time-averaged properties of high redshift blazars were derived through modeling the spectral energy distributions with a one-zone leptonic scenario, assuming the emission region is within the broad-line region (BLR) and the X-ray and γ\gamma-ray emissions are due to inverse Compton scattering of synchrotron and BLR-reflected photons. This modeling allowed us to constrain the emitting particle distribution, estimate the magnetic field inside the jet, and evaluate the jet luminosity, which is discussed in comparison with the disk luminosity derived from fitting the excess in the UV band.Comment: Accepted for publication in MNRA

    Some Properties of Stationary Gravitational Fields

    Get PDF
    © 2015 Springer Science+Business Media New York The problem of stationary gravitational fields is still far from solved, since there is no exact general solution of the Einstein equations for stationary gravitational fields. This paper examines an approach to this problem employing isotropic coordinates which, in particular, make it possible to understand which simplifications yield the Kerr solution

    Accelerated Expansion of the Early and Late Universe in Terms of the Scalar-Tensor Theory of Gravitation. I

    Get PDF
    © 2017 Springer Science+Business Media New YorkThe basic idea behind the evolutionary development of the early universe is that the hot stage was preceded by the inflationary stage. In most modern concepts of the inflationary regime, it is assumed that a specific scalar field (inflaton) is present which expands space at enormous rates, while the temperature falls rapidly, real particles almost vanish, and the universe is filled by a vacuum with the equation of state P = – ɛ. In the first part of this article, the cosmological scalar of the modified Jordan-Brans-Dicke (JBD) theory is chosen to be the inflaton. Problems in the “Einstein” and proper representations of the JBD theory are considered

    Abundance trend with condensation temperature for stars with different Galactic birth places

    Full text link
    During the past decade, several studies reported a correlation between chemical abundances of stars and condensation temperature (also known as Tc trend). However, the real astrophysical nature of this correlation is still debated. The main goal of this work is to explore the possible dependence of the Tc trend on stellar Galactocentric distances, Rmean. We used high-quality spectra of about 40 stars observed with the HARPS and UVES spectrographs to derive precise stellar parameters, chemical abundances, and stellar ages. A differential line-by-line analysis was applied to achieve the highest possible precision in the chemical abundances. We confirm previous results that [X/Fe] abundance ratios depend on stellar age and that for a given age, some elements also show a dependence on Rmean. When using the whole sample of stars, we observe a weak hint that the Tc trend depends on Rmean. The observed dependence is very complex and disappears when only stars with similar ages are considered. To conclude on the possible dependence of the Tc trend on the formation place of stars, a larger sample of stars with very similar atmospheric parameters and stellar ages observed at different Galactocentric distances is neededComment: Accepted by A&

    A long-lasting quiescence phase of the eruptive variable V1118 Ori

    Get PDF
    V1118 Ori is an eruptive variable belonging to the EXor class of Pre-Main Sequence stars whose episodic outbursts are attributed to disk accretion events. Since 2006, V1118 Ori is in the longest quiescence stage ever observed between two subsequent outbursts of its recent history. We present near-infrared photometry of V1118 Ori carried out during the last eight years, along with a complete spectroscopic coverage from 0.35 to 2.5 um. A longterm sampling of V1118 Ori in quiescence has never been done, hence we can benefit from the current circumstance to determine the lowest values (i.e. the zeroes) of the parameters to be used as a reference for evaluating the physical changes typical of more active phases. A quiescence mass accretion rate between 1--3 ×\times 109^{-9} M_{\sun} yr1^{-1} can be derived and the difference with previous determinations is discussed. From line emission and IR colors analysis a visual extinction of 1-2 mag is consistently derived, confirming that V1118 Ori (at least in quiescence) is a low-extinction T Tauri star with a bolometric luminosity of about 2.1 L_{\sun}. An anti-correlation exists between the equivalent width of the emission lines and the underlying continuum. We searched the literature for evaluating whether or not such a behaviour is a common feature of the whole class. The anti-correlation is clearly recognizable for all the available EXors in the optical range (Hβ\beta and Hα\alpha lines), while it is not as much evident in the infrared (Paβ\beta and Brγ\gamma lines). The observed anti-correlation supports the accretion-driven mechanism as the most likely to account for continuum variations.Comment: 6 figures, 5 tables, accepted on Ap

    Non-exciting wakefield structured bunches in a one-dimensional plasma model

    Get PDF
    A model of one-dimensional (1D) cold plasma with an external train of rigidly structured bunches with diverse charges has been introduced. In this model, a solution that cancels the wakefield after the train is found. The density of such bunches can be much greater than the density of the plasma, and a high amplitude electrical field arising inside the train can be used for charged-particle acceleration. In addition, analytical and numerical simulations have been performed

    Recent outburst of the young star V1180 Cas

    Full text link
    We report on the ongoing outburst of the young variable V1180 Cas, which is known to display characteristics in common with EXor eruptive variables. We present results that support the scenario of an accretion-driven nature of the brightness variations of the object and provide the first evidence of jet structures around the source. We monitored the recent flux variations of the target in the Rc, J, H, and K bands. New optical and near-IR spectra taken during the current high state of V1180 Cas are presented, in conjunction with H2 narrow-band imaging of the source. Observed near-IR colour variations are analogous to those observed in EXors and consistent with excess emission originating from an accretion event. The spectra show numerous emission lines, which indicates accretion, ejection of matter, and an active disc. Using optical and near-IR emission features we derive a mass accretion rate of ~3 E-8 Msun/yr, which is an order of magnitude lower than previous estimates. In addition, a mass loss rate of ~4 E-9 and ~4 E-10 Msun/yr are estimated from atomic forbidden lines and H2, respectively. Our H2 imaging reveals two bright knots of emission around the source and the nearby optically invisible star V1180 Cas B, clearly indicative of mass-loss phenomena. Higher resolution observations of the detected jet will help to clarify whether V1180 Cas is the driving source and to determine the relation between the observed knots.Comment: Accepted as Letter in A&A; 4 pages, 3 figure
    corecore