24 research outputs found

    Phlegmonous Colitis after Cold Snare Polypectomy in an Immunosuppressed Patient: A Case Report

    Get PDF
    Introduction: Cold snare polypectomy (CSP) is a procedure with a low risk of complications. Here, we present our experience of a rare case of submucosal abscess following CSP in an immunosuppressed patient. Case Presentation: Seventy-eight-year-old man underwent CSP, developing a fever, chills, and right lower abdominal pain 8 days later. Ultrasound and computed tomography revealed wall thickening of the ascending colon, presenting as whitening and thickening of the same region, and excretion of pus was observed after biopsy. The diagnosis was made as phlegmonous colitis, for which antibiotic therapy was commenced. The patient was diagnosed with chronic myelomonocytic leukemia (CMML) during admission. We considered the following reasons as possible causes of infectious complications after CSP: (1) the patient had a highly immunosuppressed state with comorbidities such as CMML as well as diabetes mellitus and (2) disruption of the mucosal barrier occurred during endoscopic resection. Conclusion: Although CSP is generally considered safe, our case highlights the potential for serious complications in immunosuppressed patients. Therefore, the decision to perform CSP in such patients should be made with caution to avoid unnecessary interventions. In instances where treatment is essential, thorough bowel preparation and prophylactic antibiotic use may be necessary to mitigate the risks

    Factors Responsible for Decreasing Sturdiness of the Lower Part in Lodging of Rice (Oryza sativa L.)

    No full text
    Here, we propose new improvement targets capable of decreasing loss of the sturdiness of the lower part in the rice plant (Oryza sativa L.), thereby improving lodging resistance. In nine rice cultivars with various plant lengths, we analyzed the factors responsible for sturdiness of the lower part and, thus, for resistance to lodging. The ratio of lodging resistance to sturdiness of the lower part (RLS) was calculated. The difference in pushing resistance between the lower part and the whole plant varied among cultivars. Among the morphological traits, plant length and the weight of the upper part of plant were not correlated with RLS, but the difference between plant length and length from the ground to the ear (DPE), as well as the weight of the lower stem, were positively correlated with RLS. DPE and the weight of the lower stem were not significantly correlated with ear weight. These results suggest that improvements in DPE and in the weight of the lower stem could be primary targets for improving RLS, thus increasing lodging resistance, without affecting yield

    Effects of the Temperature Lowered in the Daytime and Night-time on Sugar Accumulation in Sugarcane

    No full text
    Sugarcane (Saccharum spp.) is a major crop grown for sucrose production. In Japan, its sucrose concentration is highest in winter. We examined the effects of the temperature lowered in the daytime and night-time (LDT and LNT, respectively) on sugar assimilation. Since photosynthetic and respiration rates change with temperature, we assumed that plants under LNT (LNT plants) would have low respiration rates and thus high sugar yields, whereas those under LDT (LDT plants) would have low rates of photosynthesis and thus low sugar yields. However, because of their acclimatisation to the reduced temperatures, LNT and LDT plants had sugar yields that were similar, or superior, to those of control plants. Sugar yield depends on biomass and sugar concentration; the stems of LNT and LDT plants did not grow as tall as those of the controls, but the sucrose concentrations in their stems were higher than in the controls. 13C analysis revealed no difference in the partitioning of photosynthates to the soluble sugar fraction between control plants and those treated with low temperature. Control plants had higher glucose concentrations in the stem than treated plants, in which new photosynthates appeared to be partitioned preferentially into sucrose. Low temperature enhanced the sucrose concentration in the sugarcane stem not by improving the carbon budget, but by promoting the partitioning of carbon to stored sucrose

    Contribution of Nitrogen Absorbed during Ripening Period to Grain Filling in a High-Yielding Rice Variety, Takanari

    No full text
    High-yielding rice varieties require a large accumulation of N in panicles. The objectives of this study were to clarify the change in N allocation during the ripening period (Exp. 1) and to quantify the contribution of N absorbed during the ripening period to panicle N at maturity (Exp. 2) in the high-yielding variety Takanari in comparison with that in Nipponbare as a control. In Exp. 1, 15N-labeled N (15N) was applied at heading to investigate the distribution of newly absorbed N as well as the allocation of plant N. In Exp. 2, split 15N application was performed during the filling period to estimate the above contribution. In Exp. 1, the allocation of plant N and absorbed 15N to the panicles was larger and that to the leaves was smaller in Takanari than in Nipponbare during the ripening period, although Takanari accumulated more N at maturity. The difference in N allocation suggested that the difference in N demand in panicles would be larger than that in N uptake. In Exp. 2, the varietal difference in the grain filling duration was observed: Nipponbare accumulated little N in the panicles after 28 d after heading (DAH), while Takanari accumulated about a quarter of its panicle N during that time. An estimate showed that in Takanari, 13.5% of the panicle N was derived from N absorbed after 28 DAH. These results suggest that the utilization of newly absorbed N until a later period after heading is important for the achievement of high yields

    Changes in Photosynthetic Activity and Export of Carbon by Overexpressing a Maize Sucrose-Phosphate Synthase Gene under Elevated C02 in Transgenic Rice

    No full text
    To investigate whether increased sucrose-phosphate synthase (SPS) activity alters photosynthetic activity and/or the export of carbon from leaves under elevated C02 partial pressure ([C02]), we raised two lines of transgenic rice (H54-9 and H69-7), each overexpressing a maize SPS gene, and wild-type rice under ambient [C02] (35 Pa) and elevated [0O2] (100 Pa). Under ambient [C02], no significant difference was observed between the transgenic and wild-type plants in the levels of sucrose or starch in leaves or the photosynthetic activity; but the carbon export rate was higher in H69-7 than in the wild-type. Under elevated [C02], photosynthetic activity increased in all plants, but the accumulation of starch was significantly repressed in H54-9, whose SPS activity was about 12.5 times higher than that of the wild-type. The carbon export rate was higher in both transgenic lines than the wild-type. We considered that increased SPS activity in rice plants would promote the export of carbon from leaves and, as a result, starch accumulation in the leaves would be suppressed and/or photosynthetic activity would be promoted under elevated [CO2]

    The QTL Analysis of RuBisCO in Flag Leaves and Non-Structural Carbohydrates in Leaf Sheaths of Rice Using Chromosome Segment Substitution Lines and Backcross Progeny F2 Populations

    No full text
    In rice (Oryza sativa L.), the maintenance of high photosynthetic rate of flag leaves and the carbon remobilization from leaf sheaths after heading is a critical physiological component affecting the yield. To clarify the genetic basis of RuBisCO content of the flag leaf, a major determinant of photosynthetic rate, and non-structural carbohydrate (NSC) concentration in the third leaf sheath at heading, we carried out quantitative trait loci (QTL) analysis with 39 Koshihikari/Kasalath chromosome segment substitution lines (CSSLs) and backcross progeny F2 population derived from target CSSL holding the QTL/Koshihikari in the field. QTLs for RuBisCO content and NSC concentration at heading were detected between R2447-C1286 and R2447-R716 on chromosome 10, respectively, by comparing Koshihikari with four CSSLs for chromosome 10 (SL-229, -230, -231 and -232). The progeny QTL for RuBisCO content and for NSC concentration at heading qRCH-10 and qNSCLSH-10-1, respectively, were detected at similar marker intervals between RM8201 and RM5708. In addition, QTLs for RuBisCO content at 14 d after heading, qRCAH-10-1 and qRCAH-10-2, were detected in regions different from that of qRCH-10. No QTL for NSC concentration at 14 d after heading was detected between RM8201 and R716, the region analyzed in this study. The QTLs qRCH-10 and qRCAH-10-1 for RuBisCO content would have additive effects. These QTLs for RuBisCO content and NSC concentration newly found using CSSLs and their backcross progeny F2 population should be useful for better understanding the genetic basis of source and temporary-sink functions in rice and for genetic improvement of Koshihikari in terms of their functions
    corecore