25 research outputs found

    Analysis on the cryogenic stability and mechanical properties of the LHD helical coils

    Get PDF
    Transient normal-transitions have been observed in the superconducting helical coils of LHD. Propagation of a normal-zone is analyzed with a numerical simulation code that deals with the magnetic diffusion process in a pure aluminum stabilizer. During excitation tests, a number of spike signals are observed in the balance voltage of the helical coils, which seem to be caused by mechanical disturbances. The spike signals are analyzed by applying pulse height analysis and the mechanical properties of the coil windings are investigated

    Investigating Factors Affecting Stability of Volcanic Ash Soil Aggregates under Heat

    No full text
    Volcanic ash soil aggregates can be disaggregated using heat under wet conditions. This study aimed to investigate factors affecting the disaggregation of volcanic ash soil aggregates in a field with organic cattle manure (M plot) and a field with chemical fertilizer (F plot) that were exposed to heat. The two-step wet sieving method, in which aggregates were sieved twice at different water temperatures for different times, was used to investigate the disaggregation caused by heat. It was found that increasing the temperature during the second sieve was more effective in disaggregating aggregates than extending the second-step sieve time. When the water temperature was increased to 80 °C, macroaggregates became more vulnerable, especially those in the F plot. The total carbon (TC) remaining in the soil aggregates was also measured after sieving. Although the TC content in aggregates decreased after sieving, there was only a minor relationship between decreasing TC content and the degree of disaggregation. This suggests that aggregates were not disaggregated by eluting binding agents containing carbon contents, but by partial breakage of the binding agent and/or the peeling of particles with binding agents from the aggregates

    Investigating Factors Affecting Stability of Volcanic Ash Soil Aggregates under Heat

    No full text
    Volcanic ash soil aggregates can be disaggregated using heat under wet conditions. This study aimed to investigate factors affecting the disaggregation of volcanic ash soil aggregates in a field with organic cattle manure (M plot) and a field with chemical fertilizer (F plot) that were exposed to heat. The two-step wet sieving method, in which aggregates were sieved twice at different water temperatures for different times, was used to investigate the disaggregation caused by heat. It was found that increasing the temperature during the second sieve was more effective in disaggregating aggregates than extending the second-step sieve time. When the water temperature was increased to 80 °C, macroaggregates became more vulnerable, especially those in the F plot. The total carbon (TC) remaining in the soil aggregates was also measured after sieving. Although the TC content in aggregates decreased after sieving, there was only a minor relationship between decreasing TC content and the degree of disaggregation. This suggests that aggregates were not disaggregated by eluting binding agents containing carbon contents, but by partial breakage of the binding agent and/or the peeling of particles with binding agents from the aggregates

    Modelling of wave propagation and attenuation in the Osaka sedimentary basin, western Japan, during the 2013 Awaji Island earthquake

    Get PDF
    On 2013 April 13, an inland earthquake of Mw 5.8 occurred in Awaji Island, which forms the western boundary of the Osaka sedimentary basin in western Japan. The strong ground motion data were collected from more than 100 stations within the basin and it was found that in the Osaka Plain, the pseudo velocity response spectra at a period of around 6.5 s were significantly larger than at other stations of similar epicentral distance outside the basin. The ground motion lasted longer than 3 min in the Osaka Plain where its bedrock depth spatially varies from approximately 1 to 2 km. We modelled long-period (higher than 2 s) ground motions excited by this earthquake, using the finite difference method assuming a point source, to validate the present velocity structure model and to obtain better constraint of the attenuation factor of the sedimentary part of the basin. The effect of attenuation in the simulation was included in the form of Q(f) = Q0(f/f0), where Q0 at a reference frequency f0 was given by a function of the S-wave velocity, Q0 = αVS. We searched for appropriate Q0 values by changing α for a fixed value of f0 = 0.2 Hz. It was found that values of α from 0.2 to 0.5 fitted the observations reasonably well, but that the value of α = 0.3 performed best. Good agreement between the observed and simulated velocity waveforms was obtained for most stations within the Osaka Basin in terms of both amplitude and ground motion duration. However, underestimation of the pseudo velocity response spectra in the period range of 5–7 s was recognized in the central part of the Osaka Plain, which was caused by the inadequate modelling of later phases or wave packets in this period range observed approximately 2 min after the direct S-wave arrival. We analysed this observed later phase and concluded that it was a Love wave originating from the direction of the east coast of Awaji Island
    corecore