9 research outputs found

    Minimal set of local measurements and classical communication for two-mode Gaussian state entanglement quantification

    Get PDF
    We develop the minimal requirements for the complete entanglement quantification of an arbitrary two-mode bipartite Gaussian state via local measurements and a classical communication channel. The minimal set of measurements is presented as a reconstruction protocol of local covariance matrices and no previous knowledge of the state is required but its Gaussian character. The protocol becomes very simple mostly when dealing with Gaussian states transformed to its standard form, since photocounting or intensity measurements define the whole set of entangled states. In addition, conditional on some prior information, the protocol is also useful for a complete global state reconstruction.981

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006)

    No full text
    Bed rest studies of the past 20 years are reviewed. Head-down bed rest (HDBR) has proved its usefulness as a reliable simulation model for the most physiological effects of spaceflight. As well as continuing to search for better understanding of the physiological changes induced, these studies focused mostly on identifying effective countermeasures with encouraging but limited success. HDBR is characterised by immobilization, inactivity, confinement and elimination of Gz gravitational stimuli, such as posture change and direction, which affect body sensors and responses. These induce upward fluid shift, unloading the body’s upright weight, absence of work against gravity, reduced energy requirements and reduction in overall sensory stimulation. The upward fluid shift by acting on central volume receptors induces a 10–15% reduction in plasma volume which leads to a now well-documented set of cardiovascular changes including changes in cardiac performance and baroreflex sensitivity that are identical to those in space. Calcium excretion is increased from the beginning of bed rest leading to a sustained negative calcium balance. Calcium absorption is reduced. Body weight, muscle mass, muscle strength is reduced, as is the resistance of muscle to insulin. Bone density, stiffness of bones of the lower limbs and spinal cord and bone architecture are altered. Circadian rhythms may shift and are dampened. Ways to improve the process of evaluating countermeasures—exercise (aerobic, resistive, vibration), nutritional and pharmacological—are proposed. Artificial gravity requires systematic evaluation. This review points to clinical applications of BR research revealing the crucial role of gravity to health

    Kidney aging—inevitable or preventable?

    No full text
    corecore