34 research outputs found

    Innate Immunity and Neuroinflammation in Neuropsychiatric Conditions Including Autism Spectrum Disorders: Role of Innate Immune Memory

    Get PDF
    The neuroimmune network represents a dense network of multiple signals mediated by neurotransmitters, hormones, growth factors, and cytokines produced by multiple lineage cells and is crucial for maintaining neuroimmune homeostasis. Endogenous and exogenous stimuli, which are dangerous to the body, are detected by sensor cells, and they rapidly inform the brain through this network. Innate immunity is thought to play a major role in the neuroimmune network, through cytokines and other mediators released from secretary innate immune cells. Recent research has revealed that innate immunity has its own memory. This is accomplished by metabolic and epigenetic changes. Such changes may result in augmenting immune protection with a risk of excessive inflammatory responses to subsequent stimuli (trained immunity). Alternatively, innate immune memory can induce suppressive effects (tolerance), which may impose a risk of impaired immune defense. Innate immune memory affects the neuroimmune network for a prolonged period, and dysregulated innate immune memory has been implicated with pathogenesis of neuropsychiatric conditions. This chapter summarizes a role of innate immune memory (trained immunity vs. tolerance) in neuroinflammation in association with neuropsychiatric conditions including autism spectrum disorders (ASD)

    Associations between Monocyte Cytokine Profiles and Co-Morbid Conditions in Autism Spectrum Disorders

    Get PDF
    Autism spectrum disorder (ASD) is a behaviorally defined syndrome with frequent co-morbidities. Evidence indicate a role of innate immunity in ASD pathogenesis. This study addressed whether innate immune abnormalities are associated with ASD co-morbid conditions and/or other clinical co-variables when assessed as changes in monocyte cytokine profiles. This study included 109 ASD (median 11.5 year) and 26 non-ASD subjects (median 11.4 year). Monocyte cytokine profiles were evaluated in association with age/ethnicity, ASD severity, medications, and co-morbidities present in >15% of ASD subjects [gastrointestinal (GI) symptoms, epilepsy, allergic rhinitis, specific antibody deficiency (SAD), and fluctuating behavioral symptoms resembling pediatric acute-onset neuropsychiatric syndrome (PANS)]. ASD severity did not affect frequency of co-morbid conditions. GI symptoms, epilepsy, SAD, and PANS like symptoms revealed associations with changes in production of tumor necrosis factor-α (TNF-α)/soluble TNF-receptor II (sTNFRII), interleukin-1ß (IL-1ß)/IL-6/IL-10, and IL-6, respectively, mostly independent of other co-variables. ASD severity was associated with changes in multiple cytokines but frequently affected by other clinical co-variables. Our findings revealed associations between specific monocyte cytokine profiles and certain co-morbid conditions in ASD subjects, independent of other clinical co-variables. Our findings will aid in assessing treatment options for ASD co-morbidities and their effects on ASD behavioral symptoms

    Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among patients with autism spectrum disorders (ASD) evaluated in our clinic, there appears to be a subset that can be clinically distinguished from other ASD children because of frequent infections (usually viral) accompanied by worsening behavioural symptoms and/or loss/decrease in acquired skills. This study assessed whether these clinical features of this ASD subset are associated with atopy, asthma, food allergy (FA), primary immunodeficiency (PID), or innate immune responses important in viral infections.</p> <p>Methods</p> <p>This study included the ASD children described above (ASD test, N = 26) and the following controls: ASD controls (N = 107), non-ASD controls with FA (N = 24), non-ASD controls with chronic rhinosinusitis/recurrent otitis media (CRS/ROM; N = 38), and normal controls (N = 43). We assessed prevalence of atopy, asthma, FA, CRS/ROM, and PID. Innate immune responses were assessed by measuring production of proinflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs) in response to agonists of Toll-like receptors (TLRs), with or without pre-treatment of lipopolysaccharide (LPS), a TLR4 agonist.</p> <p>Results</p> <p>Non-IgE mediated FA was equally prevalent in both ASD test and ASD control groups, occurring at higher frequency than in the non-ASD controls. Allergic rhinitis, atopic/non-atopic asthma, and atopic dermatitis were equally prevalent among the study groups except for the CRS/ROM group in which non-atopic asthma was more prevalent (52.6%). CRS/ROM and specific polysaccharide antibody deficiency (SPAD) were more prevalent in the ASD test group than in the ASD control, FA, and normal control groups: 23.1% vs. < 5% for CRS/ROS and 19.2% vs. < 1% for SPAD. However, CRS/ROM patients had the highest prevalence of SPAD (34.2%). When compared to ASD and normal case controls, PBMCs from 19 non-SPAD, ASD test group children produced: 1) less IL-1β with a TLR7/8 agonist, less IL-10 with a TLR2/6 agonist, and more IL-23 with a TLR4 agonist without LPS pre-treatment, and 2) less IL-1β with TLR4/7/8 agonists with LPS pre-treatment. These are cytokines associated with the neuro-immune network.</p> <p>Conclusion</p> <p>Clinical features of the ASD test group were not associated with atopy, asthma, FA, or PID in our study but may be associated with altered TLR responses mediating neuro-immune interactions.</p

    Variations in Mitochondrial Respiration Differ in IL-1ß/IL-10 Ratio Based Subgroups in Autism Spectrum Disorders

    Get PDF
    Autism spectrum disorder (ASD)7 is associated with multiple physiological abnormalities, including immune dysregulation, and mitochondrial dysfunction. However, an association between these two commonly reported abnormalities in ASD has not been studied in depth. This study assessed the association between previously identified alterations in cytokine profiles by ASD peripheral blood monocytes (PBMo) and mitochondrial dysfunction. In 112 ASD and 38 non-ASD subjects, cytokine production was assessed by culturing purified PBMo overnight with stimuli of innate immunity. Parameters of mitochondrial respiration including proton-leak respiration (PLR), ATP-linked respiration (ALR), maximal respiratory capacity (MRC), and reserve capacity (RC) were measured in peripheral blood mononuclear cells (PBMCs). The ASD samples were analyzed by subgrouping them into high, normal, and low IL-1ß/IL-10 ratio groups, which was previously shown to be associated with changes in behaviors and PBMo miRNA expression. MRC, RC, and RC/PLR, a marker of electron transport chain (ETC) efficiency, were higher in ASD PBMCs than controls. The expected positive associations between PLR and ALR were found in control non-ASD PBMCs, but not in ASD PBMCs. Higher MRC, RC, RC/PLR in ASD PBMCs were secondary to higher levels of these parameters in the high and normal IL-1ß/IL-10 ratio ASD subgroups than controls. Associations between mitochondrial parameters and monocyte cytokine profiles differed markedly across the IL-1ß/IL-10 ratio based ASD subgroups, rendering such associations less evident when ASD samples as a whole were compared to non-ASD controls. Our results indicate for the first time, an association between PBMC mitochondrial function and PBMo cytokine profiles in ASD subjects. This relationship differs across the IL-1ß/IL-10 ratio based ASD subgroups. Changes in mitochondrial function are likely due to adaptive changes or mitochondrial dysfunction, resulting from chronic oxidative stress. These results may indicate alteration in molecular pathways affecting both the immune system and mitochondrial function in some ASD subjects

    Hematopoietic Stem Cell Transplant for the Treatment of X-MAID

    Get PDF
    We report outcomes after hematopoietic stem cell transplant for three patients with X-MAID, including 1 patient from the originally described cohort and two brothers with positive TREC newborn screening for SCID who were found to have a T-B-NK+ SCID phenotype attributable to X-linked moesin associated immunodeficiency (X-MAID). A c.511C&gt;T variant in moesin was identified via exome sequencing in the older of these siblings in the setting of low lymphocyte counts and poor proliferative responses consistent with SCID. He received reduced intensity conditioning due to CMV, and was transplanted with a T-depleted haploidentical (maternal) donor. His post-transplant course was complicated by hemolytic anemia, neutropenia, and sepsis. He had poor engraftment, requiring a 2nd transplant. His younger brother presented with the same clinical phenotype and was treated with umbilical cord blood transplant following myeloablative conditioning, has engrafted and is doing well. The third case also presented with severe lymphopenia in infancy, received a matched related bone marrow transplant following myeloablative conditioning, has engrafted and is doing well. These cases represent a novel manifestation of non-radiosensitive X-linked form of T-B-NK+ SCID that is able to be detected by TREC based newborn screening and effectively treated with HCT

    Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>There exists a small subset of children with autism spectrum disorders (ASD) characterized by fluctuating behavioral symptoms and cognitive skills following immune insults. Some of these children also exhibit specific polysaccharide antibody deficiency (SPAD), resulting in frequent infection caused by encapsulated organisms, and they often require supplemental intravenous immunoglobulin (IVIG) (ASD/SPAD). This study assessed whether these ASD/SPAD children have distinct immunological findings in comparison with ASD/non-SPAD or non-ASD/SPAD children.</p> <p>Case description</p> <p>We describe 8 ASD/SPAD children with worsening behavioral symptoms/cognitive skills that are triggered by immune insults. These ASD/SPAD children exhibited delayed type food allergy (5/8), treatment-resistant seizure disorders (4/8), and chronic gastrointestinal (GI) symptoms (5/8) at high frequencies. Control subjects included ASD children without SPAD (N = 39), normal controls (N = 37), and non-ASD children with SPAD (N = 12).</p> <p>Discussion and Evaluation</p> <p>We assessed their innate and adaptive immune responses, by measuring the production of pro-inflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs) in responses to agonists of toll like receptors (TLR), stimuli of innate immunity, and T cell stimulants. Transcription profiling of PB monocytes was also assessed. ASD/SPAD PBMCs produced less proinflammatory cytokines with agonists of TLR7/8 (IL-6, IL-23), TLR2/6 (IL-6), TLR4 (IL-12p40), and without stimuli (IL-1ß, IL-6, and TNF-α) than normal controls. In addition, cytokine production of ASD/SPAD PBMCs in response to T cell mitogens (IFN-γ, IL-17, and IL-12p40) and candida antigen (Ag) (IL-10, IL-12p40) were less than normal controls. ASD/non-SPAD PBMDs revealed similar results as normal controls, while non-ASD/SPAD PBMCs revealed lower production of IL-6, IL-10 and IL-23 with a TLR4 agonist. Only common features observed between ASD/SPAD and non-ASD/SPAD children is lower IL-10 production in the absence of stimuli. Transcription profiling of PB monocytes revealed over a 2-fold up (830 and 1250) and down (653 and 1235) regulation of genes in ASD/SPAD children, as compared to normal (N = 26) and ASD/non-SPAD (N = 29) controls, respectively. Enriched gene expression of TGFBR (p < 0.005), Notch (p < 0.01), and EGFR1 (p < 0.02) pathways was found in the ASD/SPAD monocytes as compared to ASD/non-SPAD controls.</p> <p>Conclusions</p> <p>The Immunological findings in the ASD/SPAD children who exhibit fluctuating behavioral symptoms and cognitive skills cannot be solely attributed to SPAD. Instead, these findings may be more specific for ASD/SPAD children with the above-described clinical characteristics, indicating a possible role of these immune abnormalities in their neuropsychiatric symptoms.</p

    Associations between Monocyte and T Cell Cytokine Profiles in Autism Spectrum Disorders: Effects of Dysregulated Innate Immune Responses on Adaptive Responses to Recall Antigens in a Subset of ASD Children

    No full text
    Changes in monocyte cytokine production with toll like receptor (TLR) agonists in subjects with autism spectrum disorders (ASD) were best reflected by the IL-1&beta;/IL-10 ratios in our previous research. The IL-1&beta;/IL-10 based subgrouping (low, normal, and high) of ASD samples revealed marked differences in microRNA expression, and mitochondrial respiration. However, it is unknown whether the IL-1&beta;/IL-10 ratio based subgrouping is associated with changes in T cell cytokine profiles or monocyte cytokine profiles with non-TLR agonists. In ASD (n = 152) and non-ASD (n = 41) subjects, cytokine production by peripheral blood monocytes (PBMo) with TLR agonists and &beta;-glucan, an inflammasome agonist, and T cell cytokine production by peripheral blood mononuclear cells (PBMCs) with recall antigens (Ags) (food and candida Ags) were concurrently measured. Changes in monocyte cytokine profiles were observed with &beta;-glucan in the IL-1&beta;/IL-10 ratio based ASD subgroups, along with changes in T cell cytokine production and ASD subgroup-specific correlations between T cell and monocyte cytokine production. Non-ASD controls revealed considerably less of such correlations. Altered innate immune responses in a subset of ASD children are not restricted to TLR pathways and correlated with changes in T cell cytokine production. Altered trained immunity may play a role in the above described changes
    corecore