46 research outputs found

    Pilot Study on Clinical Effectiveness of Autofluorescence Imaging for Early Gastric Cancer Diagnosis by Less Experienced Endoscopists

    Get PDF
    This study aimed to assess and compare effectiveness of Autofluorescence imaging (AFI) in diagnosis of early gastric cancer (EGC) between experienced and less experienced endoscopists. Fifty selected images (20 neoplastic lesions and 30 benign lesions/areas) of both white light endoscopy (WLE) and AFI were blindly reviewed by two groups; first consisted of five experienced endoscopists and second included five less experienced endoscopists. Sensitivity, specificity, and accuracy were 70%, 78%, and 75%, respectively, for AFI and 81%, 76%, and 78%, respectively, for WLE in the experienced group. In the less experienced group, sensitivity, specificity and accuracy were 80%, 81% and 80%, respectively, for AFI and 65%, 77%, and 72%, respectively, for WLE. Interobserver variability for the less experienced group was better with AFI than WLE. AFI improved sensitivity of endoscopic diagnosis of neoplastic lesions by less experienced endoscopists, and its use could beneficially enhance the clinical effectiveness of EGC screening

    Induction of inverted morphology in brain organoids by vertical-mixing bioreactors

    Get PDF
    上下動撹拌培養装置を用いた流体制御により誘導した反転型脳オルガノイド 脳オルガノイド誘導の流体シミュレーションと流体力学的理解. 京都大学プレスリリース. 2021-10-27.How you mix cells changes the brain. 京都大学プレスリリース. 2021-10-28.Organoid technology provides an opportunity to generate brain-like structures by recapitulating developmental steps in the manner of self-organization. Here we examined the vertical-mixing effect on brain organoid structures using bioreactors and established inverted brain organoids. The organoids generated by vertical mixing showed neurons that migrated from the outer periphery to the inner core of organoids, in contrast to orbital mixing. Computational analysis of flow dynamics clarified that, by comparison with orbital mixing, vertical mixing maintained the high turbulent energy around organoids, and continuously kept inter-organoid distances by dispersing and adding uniform rheological force on organoids. To uncover the mechanisms of the inverted structure, we investigated the direction of primary cilia, a cellular mechanosensor. Primary cilia of neural progenitors by vertical mixing were aligned in a multidirectional manner, and those by orbital mixing in a bidirectional manner. Single-cell RNA sequencing revealed that neurons of inverted brain organoids presented a GABAergic character of the ventral forebrain. These results suggest that controlling fluid dynamics by biomechanical engineering can direct stem cell differentiation of brain organoids, and that inverted brain organoids will be applicable for studying human brain development and disorders in the future

    The isotope effect on impurities and bulk ion particle transport in the Large Helical Device

    Get PDF
    The isotope effect on impurities and bulk ion particle transport is investigated by using the deuterium, hydrogen, and isotope mixture plasma in the Large Helical Device (LHD). A clear isotope effect is observed in the impurity transport but not the bulk ion transport. The isotope effects on impurity transport and ion heat transport are observed as a primary and a secondary effect, respectively, in the plasma with an internal transport barrier (ITB). In the LHD, an ion ITB is always transient because the impurity hole triggered by the increase of ion temperature gradient causes the enhancement of ion heat transport and gradually terminates the ion ITB. The formation of an impurity hole becomes slower in the deuterium (D) plasma than the hydrogen (H) plasma. This primary isotope effect on impurity transport contributes the longer sustainment of the ion ITB state because the low ion thermal diffusivity can be sustained as long as the normalized carbon impurity gradient R/Ln,c, where , is above the critical value (~−5). Therefore, the longer sustainment of the ITB state in the deuterium plasma is considered to be a secondary isotope effect due to the mitigation of the impurity hole. The radial profile of H and D ion density is measured using bulk charge exchange spectroscopy inside the isotope mixture plasma. The decay time of H ion density after the H-pellet injection and the decay time of D ion density after D-pellet injection are almost identical, which demonstrates that there is no significant isotope effect on ion particle transport

    Isotope effects on transport in LHD

    Get PDF
    Isotope effects are one of the most important issues for predicting future reactor operations. Large helical device (LHD) is the presently working largest stellarator/helical device using super conducting helical coils. In LHD, deuterium experiments started in 2017. Extensive studies regarding isotope effects on transport have been carried out. In this paper, the results of isotope effect studies in LHD are reported. The systematic studies were performed adjusting operational parameters and nondimensional parameters. In L mode like normal confinement plasma, where internal and edge transport barriers are not formed, the scaling of global energy confinement time (τE) with operational parameters shows positive mass dependence (M0.27; where M is effective ion mass) in electron cyclotron heating plasma and no mass dependence (M0.0) in neutral beam injection heating plasma. The non-negative ion mass dependence is anti-gyro-Bohm scaling. The role of the turbulence in isotope effects was also found by turbulence measurements and gyrokinetic simulation. Better accessibility to electron and ion internal transport barrier (ITB) plasma is found in deuterium (D) plasma than in hydrogen (H). Gyro kinetic non-linear simulation shows reduced ion heat flux due to the larger generation of zonal flow in deuterium plasma. Peaked carbon density profile plays a prominent role in reducing ion energy transport in ITB plasma. This is evident only in plasma with deuterium ions. New findings on the mixing and non-mixing states of D and H particle transports are reported. In the mixing state, ion particle diffusivities are higher than electron particle diffusivities and D and H ion density profiles are almost identical. In the non-mixing state, ion particle diffusivity is much lower than electron diffusivity. Deuterium and hydrogen ion profiles are clearly different. Different turbulence structures were found in the mixing and non-mixing states suggesting different turbulence modes play a role

    In Vitro Modeling of Blood-Brain Barrier with Human iPSC-Derived Endothelial Cells, Pericytes, Neurons, and Astrocytes via Notch Signaling

    No full text
    The blood-brain barrier (BBB) is composed of four cell populations, brain endothelial cells (BECs), pericytes, neurons, and astrocytes. Its role is to precisely regulate the microenvironment of the brain through selective substance crossing. Here we generated an in vitro model of the BBB by differentiating human induced pluripotent stem cells (hiPSCs) into all four populations. When the four hiPSC-derived populations were co-cultured, endothelial cells (ECs) were endowed with features consistent with BECs, including a high expression of nutrient transporters (CAT3, MFSD2A) and efflux transporters (ABCA1, BCRP, PGP, MRP5), and strong barrier function based on tight junctions. Neuron-derived Dll1, which activates Notch signaling in ECs, was essential for the BEC specification. We performed in vitro BBB permeability tests and assessed ten clinical drugs by nanoLC-MS/MS, finding a good correlation with the BBB permeability reported in previous cases. This technology should be useful for research on human BBB physiology, pathology, and drug development
    corecore