45 research outputs found

    Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature

    Full text link
    We present a high-resolution microwave spectrometer to measure the frequency-dependent complex conductivity of a superconducting thin film near the critical temperature. The instrument is based on a broadband measurement of the complex reflection coefficient, S11S_{\rm 11}, of a coaxial transmission line, which is terminated to a thin film sample with the electrodes in a Corbino disk shape. In the vicinity of the critical temperature, the standard calibration technique using three known standards fails to extract the strong frequency dependence of the complex conductivity induced by the superconducting fluctuations. This is because a small unexpected difference between the phase parts of S11S_{\rm 11} for a short and load standards gives rise to a large error in the detailed frequency dependence of the complex conductivity near the superconducting transition. We demonstrate that a new calibration procedure using the normal-state conductivity of a sample as a load standard resolves this difficulty. The high quality performance of this spectrometer, which covers the frequency range between 0.1 GHz and 10 GHz, the temperature range down to 10 K, and the magnetic field range up to 1 T, is illustrated by the experimental results on several thin films of both conventional and high temperature superconductors.Comment: 13 pages, 14 figure

    Dynamic fluctuations in the superconductivity of NbN films from microwave conductivity measurements

    Full text link
    We have measured the frequency and temperature dependences of complex ac conductivity, \sigma(\omega)=\sigma_1(\omega)-i\sigma_2(\omega), of NbN films in zero magnetic field between 0.1 to 10 GHz using a microwave broadband technique. In the vicinity of superconducting critical temperature, Tc, both \sigma_1(\omega) and \sigma_2(\omega) showed a rapid increase in the low frequency limit owing to the fluctuation effect of superconductivity. For the films thinner than 300 nm, frequency and temperature dependences of fluctuation conductivity, \sigma(\omega,T), were successfully scaled onto one scaling function, which was consistent with the Aslamazov and Larkin model for two dimensional (2D) cases. For thicker films, \sigma(\omega,T) data could not be scaled, but indicated that the dimensional crossover from three dimensions (3D) to 2D occurred as the temperature approached Tc from above. This provides a good reference of ac fluctuation conductivity for more exotic superconductors of current interest.Comment: 8 pages, 7 Figures, 1 Table, Accepted for publication in PR

    Direct observation of the washboard noise of a driven vortex lattice in a high-temperature superconductor, Bi2Sr2CaCu2Oy

    Full text link
    We studied the conduction noise spectrum in the vortex state of a high-temperature superconductor, Bi2Sr2CaCu2Oy, subject to a uniform driving force. Two characteristic features, a broadband noise (BBN) and a narrow-band noise (NBN), were observed in the vortex-solid phase. The origin of the large BBN was determined to be plastic motion of the vortices, whereas the NBN was found to originate from the washboard modulation of the translational velocity of the driven vortices. We believe this to be the first observation ofComment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    The electronic state of vortices in YBa2Cu3Oy investigated by complex surface impedance measurement

    Full text link
    The electromagnetic response to microwaves in the mixed state of YBa2Cu3Oy(YBCO) was measured in order to investigate the electronic state inside and outside the vortex core. The magnetic-field dependence of the complex surface impedance at low temperatures was in good agreement with a general vortex dynamics description assuming that the field-independent viscous damping force and the linear restoring force were acting on the vortices. In other words, both real and imaginary parts of the complex resistivity, \rho_1, and \rho_2, were linear in B. This is explained by theories for d-wave superconductors. Using analysis based on the Coffey-Clem description of the complex penetration depth, we estimated that the vortex viscosity \eta at 10 K was (4 \sim 5) \times 10^{-7} Ns/m^2. This value corresponds to \omega_0 \tau \sim 0.3 - 0.5, where \omega_0 and \tau are the minimal gap frequency and the quasiparticle lifetime in the vortex core, respectively. These results suggest that the vortex core in YBCO is in the moderately clean regime. Investigation of the moderately clean vortex core in high-temperature superconductors is significant because physically new effects may be expected due to d-wave characteristics and to the quantum nature of cuprate superconductors. The behavior of Z_s as a function of B across the first order transition (FOT) of the vortex lattice was also investigated. Unlike Bi2Sr2CaCu2Oy (BSCCO), no distinct anomaly was observed around the FOT in YBCO. Our results suggest that the rapid increase of X_s due to the change of superfluid density at the FOT would be observed only in highly anisotropic two-dimensional vortex systems like BSCCO. We discuss these results in terms of the difference of the interlayer coupling and the energy scale between the two materials.Comment: 10 pages, 6 figures, to be published in Phys. Rev. B, one reference adde

    Morphological and Functional Characterization of the Larval Hemocytes of the Cabbage White Butterfly, Pieris rapae crucivora

    No full text

    Maximization of second-harmonic power using normal-cut nonlinear crystals in a high-enhancement external cavity

    Get PDF
    When an antireflection-coated normal-cut nonlinear crystal is used in an external cavity for the generation of high second-harmonic power, a small residual reflection at the crystal facets causes a round-trip loss and prevents the realization of a large fundamental enhancement. This problem is eliminated when the reflected beams at the crystal facets are subject to constructive interference. We demonstrate that the temperature tuning of a β-BaB2O4 crystal of at most 3 K is sufficient to realize constructive interference at any wavelength. We achieve an enhancement factor of 125, and a second-harmonic power of 125 mW is generated at 398 nm from a fundamental power of 390 mW
    corecore