24 research outputs found

    Saliva Proteins of Vector Culicoides Modify Structure and Infectivity of Bluetongue Virus Particles

    Get PDF
    Bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) are related orbiviruses, transmitted between their ruminant hosts primarily by certain haematophagous midge vectors (Culicoides spp.). The larger of the BTV outer-capsid proteins, ‘VP2’, can be cleaved by proteases (including trypsin or chymotrypsin), forming infectious subviral particles (ISVP) which have enhanced infectivity for adult Culicoides, or KC cells (a cell-line derived from C. sonorensis). We demonstrate that VP2 present on purified virus particles from 3 different BTV strains can also be cleaved by treatment with saliva from adult Culicoides. The saliva proteins from C. sonorensis (a competent BTV vector), cleaved BTV-VP2 more efficiently than those from C. nubeculosus (a less competent / non-vector species). Electrophoresis and mass spectrometry identified a trypsin-like protease in C. sonorensis saliva, which was significantly reduced or absent from C. nubeculosus saliva. Incubating purified BTV-1 with C. sonorensis saliva proteins also increased their infectivity for KC cells ∼10 fold, while infectivity for BHK cells was reduced by 2–6 fold. Treatment of an ‘eastern’ strain of EHDV-2 with saliva proteins of either C. sonorensis or C. nubeculosus cleaved VP2, but a ‘western’ strain of EHDV-2 remained unmodified. These results indicate that temperature, strain of virus and protein composition of Culicoides saliva (particularly its protease content which is dependent upon vector species), can all play a significant role in the efficiency of VP2 cleavage, influencing virus infectivity. Saliva of several other arthropod species has previously been shown to increase transmission, infectivity and virulence of certain arboviruses, by modulating and/or suppressing the mammalian immune response. The findings presented here, however, demonstrate a novel mechanism by which proteases in Culicoides saliva can also directly modify the orbivirus particle structure, leading to increased infectivity specifically for Culicoides cells and, in turn, efficiency of transmission to the insect vector

    Inhibition of large double stranded DNA virus by MxA protein

    Full text link
    Increasing evidence points to the importance of the interferon (IFN) response in determining the host range and virulence of African swine fever virus (ASFV). Infection with attenuated strains of ASFV leads to the upregulation of genes controlled by IFN pathways, including myxovirus resistance (Mx) genes that are potent effectors of the antiviral state. Mx gene products are known to inhibit the replication of many negative-sense single-stranded RNA viruses, as well as double-stranded RNA viruses, positive-sense single-stranded RNA viruses, and the reverse-transcribing DNA virus hepatitis B virus. Here, we provide data that extend the known range of viruses inhibited by Mx to include the large double-stranded DNA viruses. Stably transfected Vero cells expressing human MxA protein did not support ASFV plaque formation, and virus replication in these cells was reduced 100-fold compared with that in control cells. In contrast, ASFV replication in cells expressing MxB protein or a mutant MxA protein was similar to that in control Vero cells. There was a drastic reduction in ASFV late protein synthesis in MxA-expressing cells, correlating with the results of previous work on the effect of IFN on viral replication. Strikingly, the inhibition of ASFV replication was linked to the recruitment of MxA protein to perinuclear viral assembly sites, where the protein surrounded the virus factories. Interactions between ASFV and MxA were similar to those seen between MxA and different RNA viruses, suggesting a common inhibitory mechanism

    African swine Fever virus causes microtubule dependent dispersal of the trans-Golgi network and slows delivery of membrane proteins including MHC class 1 to the plasma membrane

    Full text link
    Viral interference with secretory cargo is a common mechanism for pathogen immune evasion. Selective down regulation of critical immune system molecules such as major histocompatibility complex (MHC) proteins enables pathogens to mask themselves from their host. African swine fever virus (ASFV) disrupts the trans-Golgi network (TGN) by altering the localization of TGN46, an organelle marker for the distal secretory pathway. Reorganization of membrane transport components may provide a mechanism whereby ASFV can disrupt the correct secretion and/or cell surface expression of host proteins. In the study reported here, we used the tsO45 temperature-sensitive mutant of the G protein of vesicular stomatitis virus to show that ASFV significantly reduces the rate at which the protein is delivered to the plasma membrane. This is linked to a general reorganization of the secretory pathway during infection and a specific, microtubule-dependent disruption of structural components of the TGN. Golgin p230 and TGN46 are separated into distinct vesicles, whereupon TGN46 is depleted. These data suggest that disruption of the TGN by ASFV can slow membrane traffic during viral infection. This may be functionally important because infection of macrophages with virulent isolates of ASFV increased the expression of MHC class I genes, but there was no parallel increase in MHC class I molecule delivery to the plasma membrane

    Bluetongue Virus Targets Conventional Dendritic Cells in Skin Lymphâ–¿

    Full text link
    Bluetongue virus (BTV) is the etiological agent of bluetongue, a hemorrhagic disease of ruminants (particularly sheep), which causes important economic losses around the world. BTV is transmitted primarily via the bites of infected midges, which inject the virus into the ruminant's skin during blood feeding. The virus initially replicates in the draining lymph node and then disseminates to secondary organs where it induces edema, hemorrhages, and necrosis. In this study, we show that ovine conventional dendritic cells (cDCs) are the primary targets of BTV that contribute to the primary dissemination of BTV from the skin to draining lymph nodes. Lymph cDCs support BTV RNA and protein synthesis, as well as the production of infectious virus belonging to several different BTV serotypes, regardless of their level of attenuation. Afferent lymph cell subsets, other than cDCs, showed only marginal levels of BTV protein expression. BTV infection provoked a massive recruitment of cDCs to the sheep skin and afferent lymph, providing cellular targets for infection. Although BTV productively infects cDCs, no negative impact on their physiology was detected. Indeed, BTV infection and protein expression in cDCs enhanced their survival rate. Several serotypes of BTV stimulated the surface expression of the CD80 and CD86 costimulatory molecules on cDCs as well as the mRNA synthesis of cytokines involved in inflammation and immunity, i.e., interleukin-12 (IL-12), IL-1β, and IL-6. BTV-infected cDCs stimulated antigen-specific CD4 and CD8 proliferation as well as gamma interferon production. BTV initially targets cDCs while preserving their functional properties, reflecting the optimal adaptation of the virus to its host cells for its first spread

    Protection of IFNAR (-/-) mice against bluetongue virus serotype 8, by heterologous (DNA/rMVA) and homologous (rMVA/rMVA) vaccination, expressing outer-capsid protein VP2.

    Get PDF
    The protective efficacy of recombinant vaccines expressing serotype 8 bluetongue virus (BTV-8) capsid proteins was tested in a mouse model. The recombinant vaccines comprised plasmid DNA or Modified Vaccinia Ankara viruses encoding BTV VP2, VP5 or VP7 proteins. These constructs were administered alone or in combination using either a homologous prime boost vaccination regime (rMVA/rMVA) or a heterologous vaccination regime (DNA/rMVA). The DNA/rMVA or rMVA/rMVA prime-boost were administered at a three week interval and all of the animals that received VP2 generated neutralising antibodies. The vaccinated and non-vaccinated-control mice were subsequently challenged with a lethal dose of BTV-8. Mice vaccinated with VP7 alone were not protected. However, mice vaccinated with DNA/rMVA or rMVA/rMVA expressing VP2, VP5 and VP7 or VP2 alone were all protected

    <i>C. sonorensis</i> saliva or trypsin control cleave VP2 of BTV-1 particles, more efficiently than <i>C. nubeculosus</i> saliva.

    Full text link
    <p>Purified BTV-1 (RSArrrr/01) viral particles (2.5 µg) were incubated for 3 hours at 37°C either on its own as mock (lane 1) or with 0.5 or 1 µg saliva proteins from <i>C. sonorensis susceptible</i> (lanes 2 & 3), <i>C. nubeculosus</i> (lanes 5& 6) or <i>C. sonorensis refractory</i> (lanes 4&7) or with 1 or 0.5 µg trypsin as positive controls (lanes 8 & 9). M represents the molecular weight markers. Viral proteins were analysed by 10% SDS-PAGE and visualized by silver staining. BTV-1 VP2 protein (short arrow-lane 2) was completely cleaved by the saliva from both <i>C. sonorensis</i> strains (lanes 2&3 and 4&7) and by the control protease trypsin (lanes 8&9), resulting in two dominant cleavage products (CP) running at 110 kDa and 67 kDa respectively. Incubation with <i>C. nubeculosus</i> saliva proteins only resulted in partial cleavage of VP2 (lanes 5&6). VP2 cleavage products are either not detectable yet using 0.5 µg of <i>C. nubeculosus</i> saliva proteins (lane 5) or the smaller CP just starts to appear using 1 µg of <i>C. nubeculosus</i> saliva proteins. Due to a lower amount of saliva used many saliva proteins are not clearly identifiable on this SDS-PAGE. The 29 kDa sized protein identified as late trypsin (red arrow) is just visible in the lanes containing <i>C. sonorensis</i> saliva (lane 2,3,4 and 7).</p
    corecore