686 research outputs found

    High-fidelity trapped-ion quantum logic using near-field microwaves

    Full text link
    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated ion trap. We measure a gate fidelity of 99.7(1)\%, which is above the minimum threshold required for fault-tolerant quantum computing. The gate is applied directly to 43^{43}Ca+^+ "atomic clock" qubits (coherence time T2∗≈50 sT_2^*\approx 50\,\mathrm{s}) using the microwave magnetic field gradient produced by a trap electrode. We introduce a dynamically-decoupled gate method, which stabilizes the qubits against fluctuating a.c.\ Zeeman shifts and avoids the need to null the microwave field

    High-fidelity quantum logic gates using trapped-ion hyperfine qubits

    Full text link
    We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed/fidelity trade-off for the two-qubit gate, for gate times between 3.8μ\mus and 520μ\mus, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.Comment: 1 trap, 2 ions, 3 nines. Detailed write-up of arXiv:1406.5473 including single-qubit gate data als

    Magnetic field stabilization system for atomic physics experiments

    Full text link
    Atomic physics experiments commonly use millitesla-scale magnetic fields to provide a quantization axis. As atomic transition frequencies depend on the amplitude of this field, many experiments require a stable absolute field. Most setups use electromagnets, which require a power supply stability not usually met by commercially available units. We demonstrate stabilization of a field of 14.6 mT to 4.3 nT rms noise (0.29 ppm), compared to noise of ≳\gtrsim 100 nT without any stabilization. The rms noise is measured using a field-dependent hyperfine transition in a single 43^{43}Ca+^+ ion held in a Paul trap at the centre of the magnetic field coils. For the 43^{43}Ca+^+ "atomic clock" qubit transition at 14.6 mT, which depends on the field only in second order, this would yield a projected coherence time of many hours. Our system consists of a feedback loop and a feedforward circuit that control the current through the field coils and could easily be adapted to other field amplitudes, making it suitable for other applications such as neutral atom traps.Comment: 6 pages, 5 figure

    A microfabricated ion trap with integrated microwave circuitry

    Full text link
    We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised to give a large microwave field gradient to allow state-dependent manipulation of the ions' motional degrees of freedom, the key to multiqubit entanglement. The microwave field near the centre of the trap is characterised by driving hyperfine transitions in a single laser-cooled 43Ca+ ion.Comment: 4 pages, 5 figure

    High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit

    Full text link
    We implement all single-qubit operations with fidelities significantly above the minimum threshold required for fault-tolerant quantum computing, using a trapped-ion qubit stored in hyperfine "atomic clock" states of 43^{43}Ca+^+. We measure a combined qubit state preparation and single-shot readout fidelity of 99.93%, a memory coherence time of T2∗=50T^*_2=50 seconds, and an average single-qubit gate fidelity of 99.9999%. These results are achieved in a room-temperature microfabricated surface trap, without the use of magnetic field shielding or dynamic decoupling techniques to overcome technical noise.Comment: Supplementary Information included. 6 nines, 7 figures, 8 page

    Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap

    Full text link
    We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, while a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5% level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01% level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large two-dimensional trap array.Comment: 8 pages, 6 figure

    Probing Qubit Memory Errors at the Part-per-Million Level

    Full text link
    Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error ϵm\epsilon_m for a 43^{43}Ca+^+ trapped-ion qubit in the small-error regime and find ϵm<10−4\epsilon_m<10^{-4} for storage times t\lesssim50\,\mbox{ms}. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at t=1\,\mbox{ms} we measure ϵm=1.2(7)×10−6\epsilon_m=1.2(7)\times10^{-6}, around ten times smaller than that extrapolated from the T2∗T_{2}^{\ast} time, and limited by instability of the atomic clock reference used to benchmark the qubit.Comment: 8 pages, 5 figure
    • …
    corecore