161 research outputs found
Validation of Satellite Rainfall Products for Western Uganda.
Central equatorial Africa is deficient in long-term, ground-based measurements of rainfall; therefore, the aim of this study is to assess the accuracy of three high-resolution, satellite-based rainfall products in western Uganda for the 2001–10 period. The three products are African Rainfall Climatology, version 2 (ARC2); African Rainfall Estimation Algorithm, version 2 (RFE2); and 3B42 from the Tropical Rainfall Measuring Mission, version 7 (i.e., 3B42v7). Daily rainfall totals from six gauges were used to assess the accuracy of satellite-based rainfall estimates of rainfall days, daily rainfall totals, 10-day rainfall totals, monthly rainfall totals, and seasonal rainfall totals. The northern stations had a mean annual rainfall total of 1390 mm, while the southern stations had a mean annual rainfall total of 900 mm. 3B42v7 was the only product that did not underestimate boreal-summer rainfall at the northern stations, which had ~3 times as much rainfall during boreal summer than did the southern stations. The three products tended to overestimate rainfall days at all stations and were borderline satisfactory at identifying rainfall days at the northern stations; the products did not perform satisfactorily at the southern stations. At the northern stations, 3B42v7 performed satisfactorily at estimating monthly and seasonal rainfall totals, ARC2 was only satisfactory at estimating seasonal rainfall totals, and RFE2 did not perform satisfactorily at any time step. The satellite products performed worst at the two stations located in rain shadows, and 3B42v7 had substantial overestimates at those stations
Population pressure and global markets drive a decade of forest cover change in Africa\u27s Albertine Rift
Africa\u27s Albertine Rift region faces a juxtaposition of rapid human population growth and protected areas, making it one of the world\u27s most vulnerable biodiversity hotspots. Using satellite-derived estimates of forest cover change, we examined national socioeconomic, demographic, agricultural production, and local demographic and geographic variables, to assess multilevel forces driving local forest cover loss and gain outside protected areas during the first decade of this century. Because the processes that drive forest cover loss and gain are expected to be different, and both are of interest, we constructed models of significant change in each direction. Although rates of forest cover change varied by country, national population change was the strongest driver of forest loss for all countries – with a population doubling predicted to cause 2.06% annual cover loss, while doubling tea production predicted to cause 1.90%. The rate of forest cover gain was associated positively with increased production of the local staple crop cassava, but negatively with local population density and meat production, suggesting production drivers at multiple levels affect reforestation. We found a small but significant decrease in loss rate as distance from protected areas increased, supporting studies suggesting higher rates of landscape change near protected areas. While local population density mitigated the rate of forest cover gain, loss was also correlated with lower local population density, an apparent paradox, but consistent with findings that larger scale forces outweigh local drivers of deforestation. This implicates demographic and market forces at national and international scales as critical drivers of change, calling into question the necessary scales of forest protection policy in this biodiversity hotspot. Using a satellite derived estimate of forest cover change for both loss and gain added a dynamic component to more traditionally static and unidirectional studies, significantly improving our understanding of landscape processes and drivers at work
Wildfire, climate, and perceptions in northeast Oregon
Wildfire poses a rising threat in the western USA, fueled by synergies between historical fire suppression, changing land use, insects and disease, and shifts toward a drier, warmer climate. The rugged landscapes of northeast Oregon, with their historically forest- and resource-based economies, have been one of the areas affected. A 2011 survey found area residents highly concerned about fire and insect threats, but not about climate change. In 2014 we conducted a second survey that, to explore this apparent disconnect, included questions about past and future summertime (fire season) temperatures. Although regional temperatures have warmed in recent decades at twice the global rate, accompanied by increasing dryness and fire risks, the warming itself is recognized by only 40 % of our respondents. Awareness of recent warming proves unrelated to individual characteristics that might indicate experience on the land: old-timer versus newcomer status, year-round versus seasonal residence, and ownership of forested land. Perceptions of past warming and expectations of future warming are more common among younger respondents and less common among Tea Party supporters. The best-educated partisans stand farthest apart. Perceptions about local temperatures that are important for adaptation planning thus follow ideological patterns similar to beliefs about global climate change
Forest Views: Shifting Attitudes Toward the Environment in Northeast Oregon
This brief reports on a telephone survey conducted in fall 2014 as part of the ongoing Communities and Forests in Oregon (CAFOR) project. CAFOR focuses on seven counties in the Blue Mountains of northeast Oregon (Baker, Crook, Grant, Umatilla, Union, Wallowa, and Wheeler), where the landscape and local livelihoods are changing in interconnected ways. In an effort to inform policy development around natural resource management, the study seeks to understand how public perceptions of climate change and forest management intersect. Authors Angela Boag, Joel Hartter, Lawrence Hamilton, Forrest Stevens, Mark Ducey, Michael Palace, Nils Christoffersen, and Paul Oester report that 65 percent of those surveyed believe that forests are less healthy than they were twenty years ago. Approximately half of residents support increased user fees to improve forest health on federal land, and a majority believes that climate change is happening, although opinion is split between those who believe it is human-caused and those who believe it is caused by natural forces. The authors conclude that innovative economic and policy solutions are needed across the Inland West to help people and forests regain a strong and productive relationship that both supports livelihoods and sustains working landscapes
Does it matter if people think climate change is human caused?
There is a growing consensus that climate is changing, but beliefs about the causal factors vary widely among the general public. Current research shows that such causal beliefs are strongly influenced by cultural, political, and identity-driven views. We examined the influence that local perceptions have on the acceptance of basic facts about climate change. We also examined the connection to wildfire by local people. Two recent telephone surveys found that 37% (in 2011) and 46% (in 2014) of eastern Oregon (USA) respondents accept the scientific consensus that human activities are now changing the climate. Although most do not agree with that consensus, large majorities (85–86%) do agree that climate is changing, whether by natural or human causes. Acceptance of anthropogenic climate change generally divides along political party lines, but acceptance of climate change more generally, and concerns about wildfire, transcend political divisions. Support for active forest management to reduce wildfire risks is strong in this region, and restoration treatments could be critical to the resilience of both communities and ecosystems. Although these immediate steps involve adaptations to a changing climate, they can be motivated without necessarily invoking human-caused climate change, a divisive concept among local landowners
Prospectus, September 11, 1985
https://spark.parkland.edu/prospectus_1985/1017/thumbnail.jp
Patterns and Perceptions of Climate Change in a Biodiversity Conservation Hotspot
Quantifying local people's perceptions to climate change, and their assessments of which changes matter, is fundamental to addressing the dual challenge of land conservation and poverty alleviation in densely populated tropical regions To develop appropriate policies and responses, it will be important not only to anticipate the nature of expected changes, but also how they are perceived, interpreted and adapted to by local residents. The Albertine Rift region in East Africa is one of the world's most threatened biodiversity hotspots due to dense smallholder agriculture, high levels of land and resource pressures, and habitat loss and conversion. Results of three separate household surveys conducted in the vicinity of Kibale National Park during the late 2000s indicate that farmers are concerned with variable precipitation. Many survey respondents reported that conditions are drier and rainfall timing is becoming less predictable. Analysis of daily rainfall data for the climate normal period 1981 to 2010 indicates that total rainfall both within and across seasons has not changed significantly, although the timing and transitions of seasons has been highly variable. Results of rainfall data analysis also indicate significant changes in the intra-seasonal rainfall distribution, including longer dry periods within rainy seasons, which may contribute to the perceived decrease in rainfall and can compromise food security. Our results highlight the need for fine-scale climate information to assist agro-ecological communities in developing effective adaptive management
Calorimetric Investigation of Copper Binding in the N-Terminal Region of the Prion Protein at Low Copper Loading: Evidence for an Entropically Favorable First Binding Event
Although
the Cu<sup>2+</sup>-binding sites of the prion protein have been well
studied when the protein is fully saturated by Cu<sup>2+</sup>, the
Cu<sup>2+</sup>-loading mechanism is just beginning to come into view.
Because the Cu<sup>2+</sup>-binding modes at low and intermediate
Cu<sup>2+</sup> occupancy necessarily represent the highest-affinity
binding modes, these are very likely populated under physiological
conditions, and it is thus essential to characterize them in order
to understand better the biological function of copper–prion
interactions. Besides binding-affinity data, almost no other thermodynamic
parameters (e.g., Δ<i>H</i> and Δ<i>S</i>) have been measured, thus leaving undetermined the enthalpic and
entropic factors that govern the free energy of Cu<sup>2+</sup> binding
to the prion protein. In this study, isothermal titration calorimetry
(ITC) was used to quantify the thermodynamic parameters (<i>K</i>, Δ<i>G</i>, Δ<i>H</i>, and <i>T</i>Δ<i>S</i>) of Cu<sup>2+</sup> binding to
a peptide, PrPÂ(23–28, 57–98), that encompasses the majority
of the residues implicated in Cu<sup>2+</sup> binding by full-length
PrP. Use of the buffer <i>N</i>-(2-acetomido)-aminoethanesulfonic
acid (ACES), which is also a well-characterized Cu<sup>2+</sup> chelator,
allowed for the isolation of the two highest affinity binding events.
Circular dichroism spectroscopy was used to characterize the different
binding modes as a function of added Cu<sup>2+</sup>. The <i>K</i><sub>d</sub> values determined by ITC, 7 and 380 nM, are
well in line with those reported by others. The first binding event
benefits significantly from a positive entropy, whereas the second
binding event is enthalpically driven. The thermodynamic values associated
with Cu<sup>2+</sup> binding by the Aβ peptide, which is implicated
in Alzheimer’s disease, bear striking parallels to those found
here for the prion protein
- …